SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University, Cluj-Napoca				
institution					
1.2 Faculty	Physics				
1.3 Department	Department of the Condensed Matter Phyiscs and Advanced				
	Technologies				
1.4 Field of study	Physics				
1.5 Study cycle	Master				
1.6 Study programme /	Solid State Physics/ Computational Physics/ Biomaterials/				
Qualification	Biophysics and Medical Physics/				

2. Information regarding the discipline

2.1 Name of the	dis	cipline	Advanced Solid State Physics				
2.2 Course coor	dina	ator	Lect. Dr. Roxana Dudric				
2.3 Seminar coo	ordi	nator	Lect. Dr. Roxana Dudric				
2.4. Year of	1	2.5 Semester	1	2.6. Type of	E	2.7 Type of	С
study				evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bit	oliography, course notes	8		40
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					
Other activities:					
3.7 Total individual study hours 112					
3.8 Total hours per semester		154			
3.9 Number of ECTS credits 5					

4. Prerequisites (if necessary)

4.1. curriculum	Solid State Physics, Semiconductors Physics	
4.2. competencies	•	Identification and use of the main laws and principles of
	physics in a given context	

5. Conditions (if necessary)

5.1. for the course	•	Lectures hall with video projector (beamer) and blackboard
5.2. for the seminar /lab	•	Seminar hall with blackboard
activities		

6. Specific competencies acquired

	• The advanced using of the theoretical and experimental concept of the solid state physics.
ofessional npetencies	• At the end of this course, students should have the conceptual and mathematical tools to read current research papers in solid state physics and to understand the physical process underlying many solid state devices.
Pro	• The development of some algorithms based on advanced models/theories. to solve problems.
rsal ncies	• Identification of the advanced continuous formation opportunities and effective exploitation of learning techniques for the own development
Transver competer	• Effective use of information sources and communication resources and training assistance, both in Romanian and in a foreign language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• The course extends the ideas developed in the introductory course Solid State Physics on the basis of the main models and new experimental data. It will develop the basic knowledge underlining the relationship between the crystal structure and the physical properties of solids.
7.2 Specific objective of the discipline	 Students will get a deeper insight on applications of classical and quantum descriptions to explain electronic properties of solids. The Students will be introduced to the foundations of solid state physics and to the modern approaches that are in use for describing electronic correlations in solids and soft-matter.
	• The students will be able to characterize the solids from electrical, magnetic and thermal properties points of view.

8. Content						
8.1 Course	Teaching methods	Remarks				
1. The Crystal Structure of Solids: Lattice, Basis and	Presentation, debate,	2 hours				
Unit Cells, Classification of Bravais Lattices and	lecture					
Crystal Structures, Important Structures, Defects						
in Solids						
2. Crystallography: Symmetry Elements, Miller		2 hours				
indices						
3. The Reciprocal Lattice and X-Ray and Neutron		2 hours				
Crystallography						
4. Lattice Vibrations and Phonons: Brief review of		2 hours				

the vibration modes in solid. Phonon dispersion. Phonon heat capacity. Einstein model. Debye		
model. Theory vs. experiment		
5. Electron levels in a periodic potential: Review of Free Electrons in Metals (Drude and Sommerfeld models), The ions periodic potential and Von		4 hours
Karman boundary conditions, the Bloch's		
theorem, Schrodinger equation in momentum		
space, Fermi energy and Fermi surface, Electrons		
in a weak periodic potential, Energy bands and		
their representation (extended, reduced, and		
repeated zone scheme)		21
6. Methods for the calculation of electron levels in a		2 nours
binding (TB) method (application of the TB)		
method to a hand arising from s-levels)		
orthogonalized plane wave (OPW) method and		
pseudopotentials		
7. Computational Methods for Electronic structure		2 hours
calculation: <i>ab-initio</i> methods, Density-functional		
theory for electronic structure calculation		
8. Electronic structure, density of states and the		2 hours
physical properties of solids: Alkaline metals.		
Noble metals. Divalent and polyvalent metals.		
Doped and undoped semiconductors. Transition		
0 Thermal properties of solids: Dhonon and Electron		2 hours
9. Thermal properties of solids. Filoholi and Electron thermal conductivity (scattering mechanisms, heat		2 110018
canacity) Thermal conductivity in Isolators		
Metals and Semiconductors		
10. Magnetic properties of matter: Quantum Theory		2 hours
of Diamagnetism and Paramagnetism,		
Paramagnetic Susceptibility of Conduction		
Electrons, Landau diamagnetism, Crystal Field		
Splitting, Magnetic exchanges including RKKY,		
SuperExchange, Double Exchange, Spin waves		
and Magnons, Mean field theory and Stoner		
11 Ontical properties of solids: Review of Maxwell's		2 hours
equations in a nonmagnetic dielectric medium		2 110013
Absorption and Reflection of light in solids		
Kramers-Kronig relations, Polarization		
Mechanisms, Free carrier absorption of light in		
solids, Interband transitions in metals and		
semiconductors, Excitons		
12. Surfaces, Interfaces and Films: crystal structure		4 hours
(packing arrangements, close packed planes),		
Thermodynamics - change in free energy, phase		
diagrams. Kinetics - Fick's Laws, Diffusion coef,		
Armenius, Electronic Structure		
8.2 Seminar	Teaching methods	Remarks
1. Bravais Lattices and Crystal Structures	i cuching methods	2 hours
2. Symmetry Elements, Miller indices		2 hours
3. The Reciprocal Lattice and X-Ray diffraction		2 hours

4. Drude and Sommerfeld models, Bloch electrons	Presentation, debate,	1 hour
5. Nearly free electrons approximation, TB	experiment	1 hour
approximation		
6. Energy bands and energy band diagrams		2 hours
7. Magnon Contribution to specific heat		1 hour
8. Optical transitions		1 hour
9. Surfaces, Interfaces and Films		2 hours

Bibliography

[1] C. Kittel, Introduction to Solid State Physics, 7th ed., Wiley, 1996.

[2] Ashcroft N. W., Mermin N. D., Solid State Physics, Holt-Saunders International Editions Tokyo, 1981.

[3] U. Mizutani, Introduction to the Electron Theory of Metals, Cambridge University Press 2001.

[4] K. H. J. Buschow and F.R. de Boer, Physics of Magnetism and Magnetic Materials, Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow 2004

[5] M. Ohring, The Materials Science of thin films, 1992, Library of Condensed Matter physics Department [6] Kasturi Chopra," Thin film phenomena" (Editura:McGraw-Hill Company)

[7] Handouts

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is in accordance with the subjects who are studied in the same field in romanian and foreign universities and with the specific demands of research institutes, economy and labour market.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	 correctness of the knowledge completeness of the knowledge 	- Written evaluation	75			
10.5 Seminar	 -the ability to work with the gained knowledge. - the correctness and the originality of the homework 	 Active presence in seminars homeworks 	25			
10.6 Minimum performance standards						
• To be present at minimum 75% of seminars						

Basic knowledge of theory and ability to solve simple problems

Date

Signature of course coordinator

20.12.2018

2 Lutic

Signature of seminar coordinator

Signature of the head of department

Prof. Dr. Romulus Tetean

Date of approval