SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babes-Bolyai University
1.2 Faculty	of Physics
1.3 Department	Biomolecular Physics
1.4 Field of study	Physics
1.5 Study cycle	Master
1.6 Study programme / Qualification	Biophysics and medical physics, Computational Physics

2. Information regarding the discipline

2.1 Name of the discipline	Molecular Spectroscopy Complements
2.2 Course coordinator	Assoc Prof. dr. Maniu Dana, Asist Prof. dr. Mihai Vasilescu
2.3 Seminar coordinator	
2.4 Seminar coordinator	Assoc Prof. dr. Maniu Dana, Asist Prof. dr. Mihai Vasilescu
2.5. Year of study I 2.6 Semes	er 1 2.7. Type of evaluation E 2.8 Type of discipline O

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar/laboratory	1
3.4 Total hours in the curriculum	Total hours in the curriculum 42 Of which: 3.5 course 28 3.6 seminar/laborator		3.6 seminar/laboratory	14	
Time allotment:	Time allotment:				hours
Learning using manual, course supp	port, b	bibliography, course not	es		28
Additional documentation (in libraries, on electronic platforms, field documentation)			30		
Preparation for seminars/labs, homework, papers, portfolios and essays			35		
Tutorship			14		
Evaluations			7		
Other activities:			-		
3.7 Total individual study hours 112					
3.8 Total hours per semester		154			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

in a reference (in neeessary	/
4.1. curriculum	
4.2. competencies	To know basic notions on physics from the basic courses

6

5. Conditions (if necessary)

5.1. for the course	Course hall with blackboard, projector and software
5.2. for the seminar /lab activities	Laboratory with specific equipment

6. Specific skills acquired

- Operating with physical laws and physical principles in biophysics and medical physics at all levels:
- Performing experiments of medical physics and biophysics and evaluating their results based on existing theoretical models;
- Use of fundamental research laboratory equipment for conducting research experiments;
- **Professional skills** • Planning and performing of the experiments or investigations, independently, and evaluating the degree of uncertainty of the results;
 - Communication of complex scientific ideas, experimental findings or the results of a scientific project;
 - Use of specific experimental equipment and techniques from biophysics and medical physics in restricted or interdisciplinary fields;
 - Advanced planning and organization capacity

- Applying the values and ethics of the profession of researcher and responsible execution of professional tasks in terms of autonomy and decision-making based on evaluation and self-evaluation;
- Application of efficient multidisciplinary team work techniques on various hierarchical levels;
- Effective use of information sources and communication and training resources, both in Romanian and in an international language;
- Objective self-evaluation of the need for continuing vocational training for the purpose of insertion into the labor market and adaptation to the dynamics of its requirements and for personal and professional development and effective use of multilingual skills and knowledge of information and
- communication technology;

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Acquiring notions on the theoretical methods and experimental techniques concerning the interaction of electromagnetic radiation with matter
7.2 Specific objective of the discipline	Acquiring theoretical and practical skills in the acquisition, interpretation and use of spectroscopic information in the study of physico-chemical and structural properties of various materials.

8. Content

Transversal skills

8.1 Course	Teaching methods	Remarks
Optical Spectroscopy - Light interaction with atomic and molecular systems.	Lecture,	2 hours
Rotational, roto-vibrational, vibrational and electronic transitions.	demonstration,	
The theory of molecular vibrations. Diatomic molecules, polyatomic	debate, the	2 hours
molecules. Different approximations. Normal coordinates	experiment	
IR Spectroscopy. Dipole moment. Selection rules. Characteristic IR Spectra.	demonstration and presentations on the	2 hours
Examples and applications.	- computer	
Raman spectroscopy. Molecular polarizability. Raman Effect Theory.	computer	2 hours
Characteristic Raman Spectra. Examples and applications.		
Methods and equipment in IR and Raman spectroscopy		2 hours
UV-Vis Spectroscopy. Classification of electronic states and Franck-Condon		2 hours
principle. Electronic transitions and selection rules.		
Fluorescence emission spectroscopy. Jablonski diagram. Type of electronic		2 hours
transitions. Single-triplet transitions. phosphorescent emission spectroscopy.		
Nuclear Magnetic Resonance Spectroscopy: History, Introduction, Physical		2 hours
Basics of NMR, Formalism, Types of Interactions		
Nuclear Magnetic Resonance Spectroscopy: Experimental Description,		2 hours
Fourier Transform, Spectra		
Methods and equipment in magnetic resonance spectroscopy		2 hours
Electron Paramagnetic Resonance Spectroscopy: Electron in Magnetic		2 hours
Field, Resonance Absorption, Gyromagnetic Factor		
Methods and Equipment in Electron Paramagnetic Resonance Spectroscopy		2 hours
Photoelectronic, Absorption and Fluorescence X-ray Spectroscopy		2 hours
Methods and Equipment in XPS		2 hours
Bibliography		

1. S. Astilean, *Metode și tehnici moderne de spectroscopie optica*, Ed. Casa Cărții de Stiință, Cluj-Napoca, 2002.

2. T. Iliescu, S. Cîntă Pînzaru, D. Maniu, S. Astilean, R. Grecu, *Aplicații ale spectroscopiei vibraționale*, Ed. Casa Cărții de Stiință, Cluj-Napoca, 2002.

3. W. S. Struve, Fundamentals of molecular spectroscopy, Ed. John Wiley & Sons, 1997.

4. M. Diem, Introduction to modern vibrational spectroscopy, Ed. John Wiley & Sons, 1993

5. S. Ramusch, Fundamentals of UV-visible spectroscoopy, Hewlett-Packard Group, 2003.

6. J. R. Lakowicz, Principles of fluorescence spectroscopy, Springer Science, 1999.

7. D. M. Grant, R.K. Harris, Encyclopedia of Nuclear Magnetic Resonance, John Wiley&Sons, 1996.

8. C. P. Slichter, Principles of Magnetic Resonance, Springer, 1996.

9. O. Cozar, V.V. Grecu, V. Znamirovschi, *Aplicatii ale rezonantei electronice de spin in fizica molecule*, Cluj-Napoca, 1995.

10. G.E. Pake, T.L. Estle, *The Physical Principles of Electron Paramagnetic Resonance*, Benjamin Cummings, Menlo Park, CA, 1070.

N.M. Atherton, *Principles of Electron Spin Resonance*, Ellis Horwood Ltd., Chichester, 1993.
D. Briggs and M.P. Seah, *Practical Surface analysis and X-ray photoelectron Spectroscopy*, Wiley, New-York, 1983.

13. A.W. Czanderna, Methods of Surface Analysis, Elsevier, New York, 1975.

8.2 Seminar / laboratory	Teaching methods	Remarks
IR spectroscopic analysis of CO2 rotational spectrum	Presenting the	2 hours
Determination of ethanol concentration using Raman spectrometer	equipment, performing	2 hours
Study of the shape and position of the UV-Visible spectra of some	measurements, making	2 hours
chromophores (eosin, tetrazine) depending on the polarity or pH	calculations, interpreting	
of the solvent	the results, discussions.	
NMR spectroscopic analyzes of some liquid samples		2 hours
Structural investigations using RES spectroscopy		2 hours
Investigation using XPS spectroscopy		2 hours
Laboratory colloquium		2 hours
Bibliography: laboratory reports and technical books of used instrumen	its	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The students acquire theoretical and practical skills in the acquisition, interpretation and use of spectroscopic information in the study of physico-chemical and structural properties of various materials. These competencies are required after abstraction in scientific research, service or commercial activities in the field of spectral equipment, technological consultancy and didactic activities, both in the country and abroad.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in
		methods	the grade (%)
10.4 Course	Understanding of the interaction between	Final exam	45 %
	electromagnetic radiation and matter and capacity		
	to make connexion between the results obtained	Mid-term exam	30%
	by different spectroscopic methods and physico-		
	chemical and structural properties of various		
	materials.		
10.5 Laboratory	The quality of the presentation.	Direct evaluation	10%
/seminar activities	Written report on a specific subject. Answer to	Discussion and correction	15%
	questions.	if it will be neccesary of	
		the report.	
10.6 Minimum perfo	ormance standards		
➤ The main diff	erences between spectroscopic methods		
Understanding	g the principles of main techniques used in molecula	ar spectroscopy	
Planning and	carrying out an spectroscopic experiment.		

Date	Signature of course coordinator	Signature of seminar coordinator

Signature of the head of department

Date of approval