SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	BABEŞ-BOLYAI UNIVERSITY of CLUJ-NAPOCA
1.2 Faculty	PHYISICS
1.3 Department	PHYSICS of the HUNGARIAN STUDY LINE
1.4 Field of Study	PHYSICS
1.5 Study Cycle	MASTERS
1.6 Study Programme/Qualifications	COMPUTATIONAL PHYSICS

2. Information regarding the discipline

2.1 Name of the discipline	Stochastic Simulation Methods with Interdisciplinary Applications		
2.2 Course coordinator	Prof. Dr. Zoltán Néda		
2.3 Seminar coordinator			
2.4 Laboratory coordinator	Prof. Dr. Zoltán Néda		
2.5 year of study22.6 semester	42.7 Type of evaluationE2.8 Type of DisciplineF		

3. Timpul total estimat (ore pe semestru al activităților didactice)

3.1 Hours per week		Of which:		
3.2 course	3	3.3 seminar	3.4 laboratory	2
3.5 Total hours in the curriculum		Of which:		•
3.6 course	36	3.7 seminar	3.8 laboratory	24
Time allotment:				ore
Learning using manual, course support, bibliography, course notes			36	
Additional documentation (in libraries, on electronic platforms, field documentation)			12	
Preparation for seminars/labs, homework, papers, portfolios and essays			42	
Tutorship			3	
Evaluations			3	
Other activities:			_	
3.9 Total individual study hours 96	5			
3.10 Total hours per semester 15	56			

4.	Prerequisities
----	----------------

3.11 Number of ECTS credits

4.1 curriculum	Statistical Physics, C Programming, Elements of Probability Theory and Mathematical		
	Statistics		
4.2 competencies	Logical thinking, interdisciplinay thinking, communication abilities in English, active		
	participation at the courses and laboratories		

6

5. Conditions

5.1 for the course	Video projector, blackboard		
5.2 for the seminars			
5.3 for lab activities	Computers with Linux operating system, Vidoe projector		

6. Specific competencies acquired C1. Capacities for analyzing and synthetizing physical data, capacities for modelling complex phenomena

	C2. Working and mastering with software packages for analyzing and processing experimental data. Using C, Python and Mathematica software for modelling complex phenomena. Capacities for using information technologies in describing complex phenomena from physics, biology, chemistry and social sciences. Advanced programming techniques.
onal	C3. Trans- and Interdisciplinary thinking.
Professional	C4. Planning and Performing computer experiments for validating physical models. Abilities for making high performance computations in physics. Capacieties for writing computer codes and running them on modern supercomputers.
	C5. Communicating efficiently modern scientific ideas. Presenting in a professional manner results of a research or scientific projects. Capacities for writing scientific publications, to interact and have a scientific debate with Editors and Referees. omunicarea ideilor ştiințifice complexe, a concluziilor experimentelor sau a rezultatelor unui proiect ştiințific. Capacities for arguing and defeneding scientific views and ideas.
	CT1. To deal with professional duties efficiently and in a responsible manner, keeping in mind the laws and scientific ethics. Being responsible for the published scientific results and taking all actions for their proper use.
Transversal	CT2. Working in an Interdisciplinar environment respecting the professional hierarchy. Having initiative, new ideas and approaches to classical problems. Promoting the dialogue, cooperation and positive attitude in a group. Respecting multicultural environment and helping the others.
	CT3. Efficient use of information tehnology tools and presentation methods in English. Learning and applying autoevaluation methods, f or keeping the professional training up to date, in agreement with the deminds of the market.

7. Objectives of the discipline		
7.1 General objective of the discipline	- a rigorous introduction in MC simulation methods, oriented on	
	interdisciplinary applications.	
7.2 Specific objective of the discipline	- mastering stohastic simulation methods and physical modelling	
	- learning to approach modern problems in an interdisciplinary manner	
	- using classical models of physics in approaching interdisciplinary	
	problems.	
	- advance programming in C and C++	
	- an introduction to scientific research	

7. Objectives of the discipline

8. Content

8.1 Course	Teaching methods	Observations
Computer simulation techniques – an	Problem formulation	-role of Monte Carlo (MC) simulations
overview	Presentation	in physics
	Demonstartations	- Monte Carlo simulations versus
	Software packages	Molecular Dynamics (MD) methods
	Discutions	- the interdisciplinar applicability of the
	Movies	MC methods
Examples of MC simulations	Problem formulation	- detailed discussion of two examples of
	Presentation	MC simulations: simple random walk,
	Demonstartations	phase transition in a sociological

	Software packages	system,
	Discutions	
	Movies	
Random number generators	Problem formulation	-generating uniformly distributed
Kandom humber generators	Presentation	random numbers
	Demonstartations	-generating random numbers distributed
	Software packages	according to an arbitrary distribution
	Discutions	
		-generating random numbers with a
	Movies	normal distribution
	Problem formulation	-testing the random number genrators
Elements of Statistical Physics, Stochastic		- overview of basic thermodynamics,
Processes and Critical Phenomena	Presentation	statistical physics, stochastic processes
	Demonstartations	and critical phenomena knowledge,
	Software packages	needed for the course
	Discutions	
	Movies	· · · ·
Brownian dynamics	Problem formulation	-Langevin equation
	Presentation	-implementing Brownian dyanimes
	Demonstartations	-examples
	Software packages	
	Discutions	
	Movies	
Monte Carlo integration	Problem formulation	- straightforward sampling
	Presentation	-reducing the error: important sampling
	Demonstartations	-advantages of important sampling for
	Software packages	high dimensional integrals
	Discutions	
	Movies	
The Ising model	Problem formulation	-history of the Ising model
	Presentation	-phase transition in the Ising model
	Demonstartations	-exact solution in 1D
	Software packages	-mean-field solution
	Discutions	-critical behavior
	Movies	-known and unknown issues
Metropolis and Glauber MC for the Ising	Problem formulation	-important sampling and Markov chains
model	Presentation	for statistical physics integrals
	Demonstartations	-detailed balance
	Software packages	-Metropolis method
	Discutions	-Glauber method
	Movies	-application for the ising model
The BKL or kinetic MC method	Problem formulation	- problems with the Metropolis and
	Presentation	Glauber methods
	Demonstartations	- noniform time-update
	Software packages	- grain-growth
	Discutions	- kinetic MC techniques and
	Movies	interdisciplinary applications
Cluster MC methods	Problem formulation	-crtitical slowing down
	Presentation	-dynamic exponent
	Demonstartations	-Swendsen and Wang algorithm
	Software nackages	-Wolf algorithm
	Software packages Discutions	-Wolf algorithm
	Software packages Discutions Movies	-Wolf algorithm

The histogram MC method and the	Problem formulation	-fluctuation of the energy and
microcanonical MC method	Presentation	magnetization
	Demonstartations	-determining relevant quantities at
	Software packages	different temperatures
	Discutions	- the demon algorithm
	Movies	- determining the temperature of the
		microcanonical simulation
Quantum Monte Carlo methods	Problem formulation	-elements of quantum statistics
	Presentation	-quantum statistical models
	Demonstartations	-the Trotter-Suzuki transformation
	Software packages	-QMC method for 1D interacting
	Discutions	fermions
	Movies	
MC simulation of Frustrated Systems	Problem formulation	-spin-glasses
	Presentation	-NP hard and NP complete problems
	Demonstartations	-simulated annealing
	Software packages	-extremal optimization
	Discutions	-other heuristic methods
	Movies	
Interdisciplinary application of the MC	Problem formulation	-applications in materials science,
methods	Presentation	biophysics, economics, sociology and
	Demonstartations	biology.
	Software packages	
	Discutions	
	Movies	
Pibliography		

Bibliography

1. Z. Neda: Stochastic simulations in physics with interdisciplinary applications, http://www.phys.ubbcluj.ro/~zneda/edu/mc.htm

2. Z. Neda: Stochasztikus szimulacios modszerek a fizikaban (Erdelyi Tankonyvtanacs, 1998). accesibil in numar mare la biblioteca Facultății de Fizică

3. H. Gould and J. Tobochnik Introduction to Computer Simulation Methods and applications in physics (Addison-Wesley, 1996). Accesibil pentru studenți pe pagina de web a cursului în format PDF.

4.A. MacKinnon: Computational Physics online course

(http://b.sst.ph.ic.ac.uk/~angus/Lectures/compphys/compphys.html)

5.F. Bagnoli: Introduction to Cellular Automata (cond-mat/9810012; http:arxiv.org, 1998)

6.David Landau and Kurt Binder: A guide to Monte Carlo Simulations in Statistical

Physics, Cambridge Univ. Press, 2004 (disponibil la titular curs)

8.3 Laboratory	Teaching methods	Observations
- Organization aspects	Explanations	[1] coresponding links
	Presentations	
- The C programming language, some basic	Discussions	
facts	Problem formulation	
	Individual work	
- Linux operational system, some basic facts	Programming	
- research projects	Explanations	[1] coresponding links and programs in
	Presentations	С
 scientific papers that will be discussed 	Discussions	
	Problem formulation	
- computational study of the random walk	Individual work	

	Programming	
 programming the projects and presentations computational study of phase transition in a two-state interacting systems 	Explanations Presentations Discussions Problem formulation Individual work Programming	[1] coresponding links and programs in C
 working of pseudo-random number generators -testing the pseudo-random number generators 	Explanations Presentations Discussions Problem formulation Individual work Programming	[1] coresponding links and programs in C
 generating random numbers with non- uniform distribution discussing novel scientific works related to Monte Carlo methods 	Explanations Presentations Discussions Problem formulation Individual work Programming	[1] coresponding links and programs in C
 studying the Brownian dynamics studying stohastic resonance with molecular dynamics discussing novel scientific works related to Monte Carlo methods 	Explanations Presentations Discussions Problem formulation Individual work Programming	[1] coresponding links and programs in C
 The Monte Carlo integration with straightforward and important sampling calculating the number PI with MC methods. individual discussions with the students on their chosen research projects. 	Explanations Presentations Discussions Problem formulation Individual work Programming	[1] coresponding links and programs in C
 computational study of the 2D and 3D Ising model. discussing novel scientific works related to Monte Carlo methods individual discussions with the students on their chosen research projects. 	Explanations Presentations Discussions Problem formulation Individual work Programming	[1] coresponding links and programs in C
 finite size effects in the MC studies of the Ising model. discussing novel scientific works related to Monte Carlo methods. 	Explanations Presentations Discussions Problem formulation Individual work Programming	[1] coresponding links and programs in C

- individual discussions with the students on their chosen research project.		
 simulating the Potts model with q states at low temperatures (the BKL Monte Carlo method) simulationg the dynamics of atoms deposited on surfaces. 	Explanations Presentations Discussions Problem formulation Individual work Programming	[1] coresponding links and programs in C
- discussing novel scientific works related to Monte Carlo methods.		
- individual discussions with the students on their chosen research project.		
- studying 2D and 3D Ising models with the Swendsen and Wang and Wolf dynamics.	Explanations Presentations Discussions	[1] coresponding links and programs in C
-discussing novel scientific works related to Monte Carlo methods.	Problem formulation Individual work	
- individual discussions with the students on their chosen research project.	Programming	
- Studying 2D and 3D Ising problems with the histogram MC method. The microcanonical MC method.	Explanations Presentations Discussions Problem formulation	[1] coresponding links and programs inC
- discussing novel scientific works related to Monte Carlo methods.	Individual work Programming	
 individual discussions with the students on their chosen research project. 		
Presentation of individual research projects (I)	Presentations	
Presentation of individual research projects(II)	Presentations	
References1.Z.Neda :Stochastic simulations in physics with interdisciplinary applications,http://www.phys.ubbcluj.ro/~zneda/edu/mc.htm		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The syllabus and the studied material is in agreement with similar courses from other universities in Romania and abroad. For helping the integration with the deminds of the work-force market, the syllabus was harmonized with the deminds of the pre-university and university educations, of those of research institutes and the business sector.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation method	10.3 Percent in the final grade
10.4 Course	knowledge of the tought material	Exam	55%
	application of the tought material		

10.5 Seminar			
10.6 Laboratory	Solving the proposed exercises	Colloquium	25%
	Realization degree and presentation	Colloquium	20%
	of the research project		
10.7 Minimal performance standard			
Understanding the methods presented at the course and laboratory.			
Addressing the laboratory requirements in proportion of at least 75%.			
Successful Developing a project of medium complexity.			

Signature of course coordinator Prof. Dr. Neda Zoltan	Signature of seminar coordinator	Signature of laboratory coordinator Lect. Dr. Zsolt Lazar
Date	Date of approval	Signature head of Department