SYLLABUS

1.1 Higher education	Babes-Bolyai University				
institution					
1.2 Faculty	Physics				
1.3 Department	Biomedical Physics, Theoretical Physics and Molecular Spectroscopy				
1.4 Field of study	Physics				
1.5 Study cycle	Master				
1.6 Study programme /	Master Computational Physics				
Qualification					

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	ame of the discipline Symbolic Computation in Physics							
2.2 Course coor	oordinator dr. Alexandru Marcu (Lecturer)							
2.3 Seminar coo	ordinator dr. Alexandru Marcu (Lecturer)							
2.4. Year of	Π	2.5	Ι	I 2.6. Type of E 2.7 Type of F				
study		Semester		evaluation discipline				

3. Total estimated time (hours/semester of didactic activities)

	-		-		Ι.
3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					14
Evaluations					14
Other activities:					-
3.7 Total individual study hours 112					•

5.7 Total mulvidual study nours	112
3.8 Total hours per semester	154
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Physics Courses, Applied Informatics
4.2. competencies	• Software for analyzing and processing

5. Conditions (if necessary)

5.1. for the course	Computer room, computers, appropriate software
5.2. for the seminar /lab	Computer room, computers, appropriate software
activities	

6. Specific competencies acquired

0. Speem	c competencies acquired
	• Apply knowledge of physics and related fields in virtual experiments, using specialized software
Professional competencies	 Solving problems of modern physics, with imposed conditions, using specialized software tools and models The development and the use of software and virtual instrumentation in solving various applications in physics and related fields Interdisciplinary approach for theoretical and experimental physics projects Using Mathematica package and skills in communicating with external programs
Transversal competencies	 Understanding and applying proper software to solve interdisciplinary problems Capability in efficient use of information sources and data Familiarize students with the type of applications in physics that can be addressed through academic software and initiate their research in more complex -simulation programs Selection of the interest graduate research projects , understanding and application of specific packages, following the usage rules, linear approximations, interactive work with data files, graphics, numerical computation, etc.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Training skills needed to use SCMP (symbolic computational methods in physics) to solve research problems and to simulate physical phenomena Interactive use of Mathematica
7.2 Specific objective of the discipline	 A new level of knowledge that would allow special applications Master skills to develop and operate software packages that allow numerical calculations and simulations of fundamental processes in physics and related fields Development of interdisciplinary directions

8. Content

8.1 Course	Teaching methods	Remarks
1. INTRODUCTION. General description of the	Combined lecture,	2 hours
basic concepts in symbolic calculus formalism.	use blackboard and	
Mathematica and Maple Overview, Structure	visual aids	
of Mathematica		
2. BASICS OPERATIONS on numbers,	Combined lecture,	2 hours
expressions and specific functions. Basic rules	use blackboard and	
of Mathematica syntax	visual aids	
3. NUMERICAL CALCULATIONS and Built-in	Combined lecture,	2 hours
functions, elementary algebra, defining and	use blackboard and	
evaluating function,	visual aids	
4. GRAPHING FUNCTIONS functions of a	Combined lecture,	2 hours
single Variable, Parametric and Polar plots,	use blackboard and	
Parametric Curves and Surfaces Space,	visual aids	
Solving Equations, Animations		
5. SPECIAL FUNCTIONS (Airy, Bessel,	Combined lecture,	4 hours
Laguerre, Legendre, Hermite, Fresnel	use blackboard and	

hypergeometric, erf, gamma, etc.), Orthogonal polynomials, inverse functions, elliptic functions, Green functions Integration	visual aids						
 6. CALCULUS, limits, differential calculus, Integral calculus, series, multivariable calculus, Fourier series 	Combined lecture, use blackboard and visual aids	2 hours					
7. Lists and Tables, list operations, Manipulating lists, approximating lists with functions,	Combined lecture, use blackboard and visual aids	2 hours					
 MATRICES AND VECTORS, Nested lists, Basic Computations with Matrices and Vectors, Linear Systems of Equations, Eigenvalues and Eigenvectors, Linear Programming 	Combined lecture, use blackboard and visual aids	2 hours					
9. ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS, first-order, Second-order and Higher-order Linear Equations, System of Equations, Some important Partial Differential Equations	Combined lecture, use blackboard and visual aids	4 hours					
10. PROGRAMMING IN MATHEMATICA, Procedural programming, Modules, Functional Programming, Rule-Based Programming	Combined lecture, use blackboard and visual aids	2 hours					
 11. APPLICATIONS, Solving equations : mechanics (waves), electrodynamics (dipole- radiation), hydrodynamic (fluid flow ec.de), quantum (one-dimensional problems, Clebsch- Gordan coefficients), plasma (dispersioneq., KDV equation-solitons, ec . Bessel equation for MHD waves), TRR (Christoffel coefficients), statistics (distributions, averages, etc), atomic physics (orbitals) 	Combined lecture, use blackboard and visual aids	4 hours					
Bibliography							
1. The student's Introduction to Mathematica, Cambrid							
2. <i>Mathematica in Actio</i> ", S.Wagon, Springer, Telos, 2							
3. <i>Computing with Mathematic</i> ", M.H.Hoft, Academic							
4. <i>Mathematica Book</i> , S. Wolfram, , Cambridge Univer	•						
Interscience, 2003	 Numerical and Analytical Methods for Scientists and Engeneering Using Mathematica, D. Dubin, Wiley- Interscience, 2003 						
	 Numerical Methods Mathematica Notebooks, John H. Mathews, Department of Mathematics California State University Fullerton, 2006, <u>http://math.fullerton.edu/mathews/</u> 						
7. Mathematica for Theoretical Physic", Gerd Baumann, Springer, 2005							
8. <i>Mathematica by Example</i> , M.L.Abell. J.P. Braselton, Elsevier, 2009							
9. A Brief Introduction to Mathematica, C.Moretti, Department of Mathematics, Oklahoma State Univ., 2006							
10. The Theory of Equations, W.S. Burnside and A.W.	10. The Theory of Equations, W.S. Burnside and A.W. Panton, S. Chand & Co., 1972.						
11. Seminumerical Algorithms, D.E. Knuth, Second Edition, Addison-Wesley, 1981.							
12. Tables of LaplaceTransforms, F.Oberhettinger, L. BadiiNew York: Springer-Verlag, 1973.							
13. Numerical Mathematics: Theory and Computer App.	lications, E. Froberg, Benj	amin/ Cummings, 1985					

- 14. A First Course in Numerical Analysis, A. Ralston & P. Rabinowitz, (2nd. ed.), McGraw-Hill, New York, 1978
- 15. The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods, John

C. Butcher: John Wiley &Sons, New York, 1987

C. Butcher: John whey & Sons, New York, 1987		
 8.2 Seminar / laboratory 1. Running Mathematica, Numerical calculations, , numerical capabilities, basic numerical calculations, exact arithmetic, precision, clearing variables, iterators, symbolic computation, algebraic and trigonometric calculations, some intrinsic functions 	Teaching methods heuristic conversation, individual and group topics, specific software packages	Remarks 2 hours
 Calculus, limits, differential calculus, Integral calculus, power series, multivariable calculus, matrices and vectors, complex arithmetic 	heuristic conversation, individual and group topics, specific software packages	2 hours
 Working with data, lists, manipulating lists, approximating lists with functions, tables, defining and evaluating functions, solving equations and linear system of equations, eigenvelues and eigenvectors 	heuristic conversation, individual and group topics, specific software packages	2 hours
 Graphics, simple plot, parametric plots, contour and density plots, 3D plots, animation, input and output control 	heuristic conversation, individual and group topics, specific software packages	1 hours
5. Ordinary and partial differential equations, special functions (Airy, Bessel, Laguerre, Legendre, Hermite, Fresnel hypergeometric, erf, gamma, etc.), Fourier series and transforms	heuristic conversation, individual and group topics, specific software packages	2 hours
 Loading Packages, Programming in mathematica, Procedural programming, Modules, Functional Programming, Rule- Based Programming, 	heuristic conversation, individual and group topics, specific software packages	1 hours
 7. Applications: Normal modes of a system of n masses (n=2,3,,m), Gravitational fields, Electrostatics (potential of a ring, flat surface charge distribution), Magnetism (circular loop, current with general shape, solenoid, rotating charged spherical shell, rotating charged hollow cylinder), Fourier series (some applications), Nonlinear dynamical system (pendulum, time-independent Schrodinger equation, infinite potential well, finite potential well, harmonic oscillator, anharmonic oscillator), String dynamics: the wave equation (plucked string, traveling disturbances), Solution of the heat equation in some separable geometries, etc 	heuristic conversation, individual and group topics, specific software packages	4 hours

Bibliography

- 1. Mathematica for Physics, R.L. Zimmerman and F.I. Olness, Addison-Wesley, 2002 (2nd ed.)
- 2. A Physicist's Guide to Mathematica by P.T. Tam, Academic Press, 1997
- 3. Mathematica for Scientists and Engineers by R. Gass, Prentice Hall, 1998
- 4. Mathematica by Example by M.L. Abell and J.P. Braselton, Academic Press, 1997
- 5. *Mastering Mathematica* by J.W. Gray, Academic Press, 1998 (2nd ed.)

Useful links:

http://www.physics.umd.edu/courses/CourseWare/EssentialMathematica/

http://www.physics.umd.edu/courses/CourseWare/StatisticalPhysics/

http://www.physics.umd.edu/courses/CourseWare/MathematicalPhysics/

http://library.wolfram.com/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The course presents selected topics from the area of interest of the Masters degree candidates and emphasizes on applying the appropriate software packages. To this end, the course contains detailed usage instructions, explanations on linear approximations, interactive database manipulation, graphical representations, numerical calculus, etc. The Mathematica software is a technical programming environment, assuring means for numerical integration, symbolic calculation and graphics, thus being complementary to the conceptualizing of the problem. These concepts and means are gradually and systematically presented to the students in an interactive manner, allowing them to quickly solve problems in all natural sciences, e.g. physic, biology.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the			
			grade (%)			
10.4 Course	Research project	Oral examination	45%			
	Continuous assessment	Tests (2)	30 %			
10.5 Seminar/lab activities	Lab.Activity	Topics addressed,	25 %			
		originality of the projects				
10.6 Minimum performance standards						
Using Mathematica to solve concrete theoretical physics applications and interdisciplinary issues						
 Ability to develop a specific research master project 						

Date	Signature of course coordinator	Signature of seminar coordinator
	. Lect.dr. Alexandru Marcu	

Date of approval

Signature of the head of department

.....

Prof.dr.Leontin David