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Zusammenfassung

Die Theorie dynamischer Systeme befasst sich typischerweise mit niedrig di-
mensionalen Systemen [1]. Um aber das dynamische Verhalten von komplexen
Systemen, welche von einer Vielzahl von Variablen beschrieben werden, zu ver-
stehen, muss man den Rahmen dieser Theorie erweitern. In dieser Dissertation
legen wir dar, wie neu entwickelte Konzepte und Methoden es uns erlauben, die
einfachen dynamischen Prinzipien zu finden, welche hinter der Komplexität ste-
hen. In der Forschungsliteratur der letzten Jahre wurden vermehrt Methoden aus
der Theorie der dynamischen Systeme als wesentliches Instrument zur Analyse
diverser komplexer Phänomene eingesetzt. Um ein tieferes Verständnis für solche
Systeme zu erlangen, finden diese Methoden ihre Anwendung beispielsweise bei
der Analyse von neuronalen Aktivitätsmustern, wie sie im Gehirn auftreten [2, 3],
oder im Zusammenhang mit biologisch inspirierten Robotern, welche implizit und
selbst-organisiert ihre physische Gestalt und ihre Umgebung erfahren (Embodi-
ment). Weitere Einsatzgebiete stellen komplexe Netzwerke im Allgemein [4], und
insbesondere die Untersuchung von rückgekoppelten neuronalen Netzwerken dar,
sowie die Regelung von multi-stabilen Systemen [5], welche eine Bandbreite von
Anwendungen in verschiedenen wisschenschaftlichen und technischen Disziplinen
hat [6].

In Kapitel 1 werden wir, in aller Kürze, die grundlegenden Konzepte und
Methoden der Theorie dynamischer Systeme erläutern und eine einheitliche, an
die gängigen Standards angelehnte Notation einführen, auf die sich alle darauffol-
genden Kapitel dieser Dissertation beziehen werden. Wir beginnen mit dem ma-
thematischen Formalismus, mit dessen Hilfe wir die Dynamik von komplizierteren
Systemen, wie beispielsweise von neuronalen Netzwerken und Robotern, untersu-
chen. Dabei werden unter anderem Konzepte wie kontinuierliche Phasenraumflüsse
und diskrete Abbildungen, Attraktoren und ihre Stabilität, aber auch Bifurkationen
umfasst. Darauf folgt eine Zusammenfassung aktueller Forschungsergebnisse, samt
ihrer Konzepte und Methoden, zur Untersuchung komplexer dynamischer Systeme,
welche die Bedeutung von multi-stabilen Systemen, entarteten Attraktoren und
Übergangszuständen in dynamischen Systemen erläutern.

In Kapitel 2 stellen wir anschließend einen neu entwickelten Ansatz zur Kon-
struktion von multi-stabilen Systemen vor, welcher auf einem Baukastenprinzip
beruht. Dazu stellen wir zunächst die Klasse der prototypischen dynamischen Sy-
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8 Zusammenfassung

steme vor, wobei wir darauf hinweisen, dass viele dieser Systeme sich auf ein und
dieselbe Art von Gleichung zurückführen lässt. Des Weiteren veranschaulichen wir,
wie die Regelung des Energiegleichgewichts genutzt werden kann, um Bifurkatio-
nen zu erzeugen. In Abschnitt 2.2 präsentieren wir einen neue Klasse dynamischer
Systeme [7], welche als Prototypen für die Modellierung und Untersuchung von
komplexen Bifurkationsszenarien von Grenzzyklen und chaotischen Attraktoren
dienen, wie sie in komplexeren Systemen höherer Dimension vorkommen können.

Um die Regionen im Phasenraum zu regulieren, in welchen Energie aufge-
nommen bzw. abgegeben wird, fügen wir einen neuartigen Reibungsterm hinzu,
welcher explizit vom mechanischen Potential abhängt, das wiederum aus einer
endlichen Anzahl von lokalen Minima besteht.

Indem wir ein verallgemeinertes Potential definieren und damit die Position
und Tiefe der jeweiligen Minima bestimmen, sind wir in der Lage – wie mit einem
Kochrezept – ein System mit einer bestimmten Anzahl verschiedener Attraktoren
zusammenzustellen.

Wir zeigen anhand zweier Beispiele in Abs. 2.3, welche verschiedenen Attrak-
toren sich mit Hilfe eines einfachen Doppelmuldenpotentials in einem Phasenraum
mit Regionen, in denen abwechselnd Energie aufgenommen bzw. abgegeben wird,
erzeugen lassen. In einem zweidimensionalen System mit einer Raumdimension
lässt sich eine Kaskade von Bifurkationen von Grenzzyklen beobachten. In einem
vierdimensionalen Phasenraum (zwei Raumdimensionen) zeigt das Prototypsystem
eine Symmetrie brechende Bifurkation bevor eine Kaskade von Periodenverdopp-
lungen das System ins Chaos überführt. Im Falle des beobachteten chaotischen
Attraktors kann ebenfalls Intermittenz beobachtet werden. Dabei zeigen wir weiter,
dass die Erzeugung von Grenzzyklen aus destabilisierten Fixpunkten nicht von der
Form des Potentials an sich bedingt wird. Die einzige Bedingung hierfür ist das
Vorhandensein einer endlichen Anzahl von lokalen Minima. Das Kapitel schließt
in Abs. 2.4 mit einer analytischen Herleitung für die Erzeugung von Grenzzyklen.

Eines der faszinierendsten ungelösten Probleme der zeitgenössischen Forschung
betrifft die Betrachtung des Nervensystems als komplexes, adaptives, dynamisches
System [1]. Nichtsdestotrotz birgt die Beschreibung der Dynamik in neuronalen
Netzwerken neue Herausforderungen für die klassische Theorie dynamische Syste-
me [8].

In Kapitel 3, stellen wir einen weitere Herangehensweise für die theoretische
Behandlung des Nervensystems vor. Dabei werden sowohl das gesamte Repertoir
dynamischen Verhaltens, als auch die Bestandteile, welche für die Generierung der
einzelnen dynamischen Ausprägungen verantwortlich sind, analysiert, um so das
zugrunde liegende Verhalten zu verstehen. Dieser Ansatz stellt einen Zugang zum
Feld der Neurowissenschaften her, welcher komplementär ergänzend zur Methodik
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der Computational Neuroscience ist. Des Weiteren könnte dieser Ansatz zur Ent-
wicklung neuer nützlicher Methoden auf dem Gebiet der nichtlinearen Dynamik
beitragen. In diesem Zusammenhang präsentieren wir an dieser Stelle eine neue
Klasse von rekurrenten neuronalen Netzwerken, welche Übergangszustände [9]
hervorruft, ohne dabei auf externe Stimuli angewiesen zu sein. Wir erörtern die
Rolle der synaptischen Kurzzeitplastizität [10] (short-term synaptic plasticity)
für die Dynamik des Netzwerkes. Dabei könnte die Kurzzeitplastizität für die
Entstehung von Übergangszuständen verantwortlich sein, welche von wenigen
Millisekunden bis hin zu einigen Sekunden andauern.

Zu Beginn zeigen wir die wesentlichen Herausforderungen, welche sich erge-
ben, wenn man das Gehirn als dynamisches System beschreibt, und legen ebenfalls
dar, inwieweit das Konzept der Übergangszustände typisch für die Dynamik ver-
schiedener kognitiver Prozesse ist [3]. Darüberhinaus werden Standardmodelle
für die Modellierung von Neuronen kontinuierlicher Aktivität und synaptischer
Kurzzeitplastizität vorgestellt. Daraufhin folgt eine Analyse der Bifurkationen in
einem symmetrischen neuronalen Netzwerk, welches aus vier Neuronen besteht,
in Abhängigkeit eines konstanten, globalen externen Stimulus. Dadurch erhalten
wir eine tieferes Verständnis für den Zusammenhang der Übergangszustände mit
den zerstörten Attraktoren des Netzwerks. Schließlich präsentieren wir anhand
von Beispielen Übergangszustände in größeren Zufallsnetzwerken, welche sich
entweder in Form von regulären grenzzyklischen Oszillationen oder von chaotisch
fluktuierenden Aktivitätsmustern zeigen.

Um zu demonstrieren, welche Rolle die Kurzzeitplastizität für die Entstehung
von raum-zeitlichen Mustern spielt, wie sie in vielen kognitiven Phänomenen be-
obachtet wird, betrachten wir Netzwerke, welche Cliquen kodieren, d. h. deren
Fixpunkte Cliques aktiver Neuronen sind. Die exzitatorischen und inhibitorischen
Strukturen verhalten sich dabei komplementär zueinander. Die zugrundeliegende
Topologie des Netzwerks ist nicht nur biologisch plausibel, sondern ermöglicht
auch eine beliebig große Zahl an möglichen Zuständen, welche in diesem Fall
jeweils einer Clique aktiver, exzitatorisch verbundener Neuronen entsprechen.

Der von uns vorgeschlagene Mechanismus zur Generierung von Übergangs-
zuständen basiert nicht auf heteroklinen Kanälen, welche im Allgemeinen nicht
stabil sind und nur in Systemen mit spezieller Topologie vorkommen [3]. Daher
sind wir der Auffassung, dass die hier vorgestellten Prinzipien insbesondere große
Bedeutung für die Modellierung von biologisch realistischen neuronalen Netz-
werken haben, welche im Allgemeinen durch die Präsenz mehrerer verschiedener
Zeitskalen charakterisiert werden.

Das Forschungsgebiet der künstlichen Intelligenz ist im Allgemeinen sehr stark
mit den Gebieten Comupational Neuronscience und Hirnforschung verknüpft.
Teilgebiete, die sich mit künstlichen kognitiven Systemen und autonomen Robo-
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tern befassen, versuchen die Ergebnisse und Methoden der Neurowissenschaften,
Kognitionswissenschaften und der Theorie komplexer Systeme zu vereinen und
gleichzeitig neue Paradigmen für selbstständig agierende künstliche Systeme und
Roboter zu entwickeln. In diesem Sinne erweitern wir in Kapitel 4 den An-
wendungsbereich der Theorie dynamischer Systeme und ihrer Konzepte auf die
Untersuchung robotischer Fortbewegung. Dafür kombinieren wir die Ergebnisse
der vorhergehenden Kapitel.

Zuerst machen wir den Leser dabei mit dem Feld der sogenannten locomotion
robophysics vertraut [11] und setzen es in Kontrast zu herkömmlichen Ansät-
zen der Robotik. Wir untersuchen das Verhalten von einfachen, zylindrisch oder
sphärisch geformten, rollenden Robotern mit Hilfe der Simulationsumgebung LPZ-
Robots [12] und zeigen auf, dass selbst minimale Kontrollmechanismen komplexe
Bewegungsmuster erzeugen können. Das “Nervensystems” des Roboters besteht
in diesem Fall aus einem einzelnen oder drei gekoppelten Neuronen, welche die
aktuelle Position eines Aktors im Roboter erfassen. Die Aktivität der Neuronen
wird, in Anlehnung an die neuronalen Netzwerke, die in Kapitel 3 vorgestellt
wurden, durch interne Plastizität und Kurzzeitplastizität beeinflusst. Die resultie-
renden Bewegungsformen entsprechen Grenzzyklen und chaotischen Attraktoren
im allumfassenden Phasenraum der internen und externen Variablen. Im Zuge
unserer Untersuchungen haben wir heraus gefunden, dass die Interaktion mit an-
deren Robotern oder anderen Hindernissen zum Hin- und Herschalten zwischen
verschiedenen parallel existierenden Attraktoren führt. Dies ist die bemerkenswerte
Konsequenz der in Kapitel 2 diskutierten Multistabilität.

Das dynamische Verhalten der Roboter ist durch die lokalen Instabilitäten,
welche von der Dynamik der Neuronen erzeugt werden, selbst-organisiert, solange
es nicht durch eine Top-down-Kontrolle übersteuert wird [12]. Da die Fortbewe-
gung als solche ohne diese sensomotorische Schleife gar nicht, oder nur mit sehr
wenigen, intrinsisch vorhandenen Kontrollmustern ablaufen würde, können wir
davon ausgehen, dass diese Roboter vollständig verkörpert (fully embodied) [13]
sind. Wie in Abs. 4.2.1 beschriebenen, schlagen wir vor, das Embodiment aus der
Perspektive der Theorie dynamischer Systeme zu behandeln. Die Methode basiert
auf dem Vergleich von tatsächlich beobachteten Fortbewegungsmustern und den
Mustern, welche intern und ohne Umwelteinfluss erzeugt werden. Als Beispiel
zeigen wir, dass ein tonnenförmiger Roboter auch dann noch in der Lage ist eine
Rollbewegung zu generieren, wenn das isolierte Kontrollsystem des Aktors ohne
äußere Einflüsse in einen stabilen Fixpunkt ohne interne Dynamik konvergieren
würde [14]. Anhand der so entstehenden Rollbewegung, welche sich ebenfalls in
der Dynamik des Kontrollsystems wiederfindet, lässt sich zeigen, wie grundlegend
wichtig die Rückkopplung der Umgebung für die Entwicklung von komplexen
Verhaltensmustern ist.

Die daraus entstehenden Fortbewegungsmuster entsprechen selbst-organisierten
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Grenzzyklen und chaotischen Attraktoren im kombinierten Phasenraum des Ro-
boters, welcher sich aus den internen Variablen (Körper, Aktor, Kontrollsystem)
und den externen, der Umgebung entsprechenden Variablen zusammensetzt. Es
ist möglich diese Unterteilung zu machen, wenn die internen Variablen einen
unabhängigen Unterraum des Systems aufspannen [15]. Die Dynamik des tonnen-
förmigen Roboters und des kugelförmigen Roboters sind unabhängig von deren
Position oder Bewegungsrichtung. Trotzdem sind diese externen Variablen sehr
wohl notwendig für die Interpretation des Verhaltens als allgemeine Fortbewegung
des Roboters und insbesondere für das Erkundungsverhalten des Roboters. Auf-
grund der globalen Symmetrien formen die entarteten Attraktoren ein Kontinuum
in der Bewegungsebene. Im Falle dass mehrere koexistierende Attraktoren zugegen
sind, also das System multi-stabil ist [5], entscheiden die Anfangsbedingungen der
internen Variablen darüber, welcher Attraktor aus dem überlappendem Kontinuum
ausgewählt wird und damit wie sich das Langzeitverhalten entwickelt.

Unsere Untersuchungen sind Bestandteil der seit Langem bestehenden Bemü-
hungen, die Komplexität in den Kontrollsystemen für robotische Fortbewegung
zu reduzieren [16, 17]. Dabei konzentrieren wir uns besonders auf die Ausbil-
dung von Attraktoren im kombinierten Phasenraum aus Roboter und Umgebung.
Diese Herangehensweise hat sich als erfolgreich herausgestellt, was das Verständ-
nis von verschiedenen Fortbewegungsarten als grenzzyklische Attraktoren [18]
angeht. Dennoch sind wir davon überzeugt, dass eine systematische Theorie der
robotischen Fortbewegung auf Grundlage der Theorie dynamischer Systeme einen
signifikanten Beitrag sowohl für die Entwicklung als auch für die Realisierung
selbständiger Roboter liefern würde. Die Arbeit, welche wir in diesem Kapitel
vorstellen, kann als eine erster Schritt in diese Richtung verstanden werden.

Zum Schluss dieser Dissertation werfen wir einen Blick auf die Herausforderun-
gen und Beschränkungen der aktuellen Forschung im Gebiet der komplexen dyna-
mischen Systeme. Die hier vorgestellten wissenschaftlichen Beiträge zielen in die-
sem Zusammenhang darauf ab, eine Brücke zwischen den wohl bekannten, niedrig
dimensionalen dynamischen Systemen und komplexeren und höher dimensiona-
len Systemen, wie sie Anwendung in den Neurowissenschaften oder der Robotik
finden, zu schlagen. Zu guter Letzt werfen wir drei ambitionierte Fragen auf, aus
welchen sich Möglichkeiten für zukünftige Forschungsrichtungen ableiten lassen.
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Abstract

The extension of the scope of dynamical systems theory to the study of complex
high-dimensional systems, would contribute greatly to the understanding of the
versatile dynamical behavior of various physical, biological, or economical phe-
nomenon. Here, we present novel models, methods and applications of dynamical
systems, our results being embedded in the long standing effort of bridging the gap
between the theory of simple (low dimensional) and complex (high dimensional)
nonlinear systems.

We begin with a general introduction to the field of dynamical systems theory,
providing an overview of the basic concepts and the mathematical formalism,
which is consistently employed throughout the following chapters. In the second
part of Chapter 1 we also discuss some more recent developments of the field, such
as transient-sate dynamics, multistability and degenerate attractors, which, being
in the forefront of dynamical systems research, are exploited further in the present
thesis.

In Chapter 2, we propose a novel class of prototype dynamical systems,
formally corresponding to generalized Liénard-type equations with arbitrary di-
mensions, which allows for the construction of coexisting attractors in the phase
space. In the endeavor of creating multistable systems in a controlled manner, we
rely on two essential components: a potential function characterized by a certain
number of local minima, and a generalized friction term (playing the role of drag
in the system), being in turn functionally dependent exclusively on the potential.
For a purely dissipative friction function, the minima of the potential correspond to
stable fixpoints of the system, while energy uptake in their neighborhood leads to
the generation of stable limit cycles. Changing gradually the area of dissipative and
anti-dissipative regions a chaotic attractor is created, with geometrical properties
which are reflecting the destabilized limit cycles.

To construct attractors at specified locations in the phase space, we introduce
furthermore a generalized potential function, with a predefined number of local
minima. Setting then both the height and the positions of minima one may place fix-
point, limit-cycle and chaotic attractors at arbitrary spatial coordinates. Considering
2- and 4-dimensional versions of the prototype dynamical system, in Chapter 2,
we demonstrate that cascades of limit-cycle bifurcations can be generated in a

13
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controlled manner. Finally, we speculate that adding an additional slow dynamics
to the location or shape of minima, the metadynamics of attractors may also be
investigated.

Following the idea of coupling slow variables to multistable systems, in Chap-
ter 3, we investigate attractor neural networks with dynamic synapses. After
discussing the role of well-defined activity states, we provide a brief overview
of the mathematical models employed in the field. Considering clique-encoding
attractor neural networks, with coexisting stable fixpoints of active cliques of exci-
tatory neurons, we study the effect of short-term synaptic plasticity (STSP) on the
network dynamics.

We show that the dynamical change of connection strengths, modeled here by
the rules of STSP, may destabilize the fixpoint attractors. The generated oscillatory
behavior, referred to as transient-state dynamics, is characterized by relatively long
plateaus of activity. Studying first a four-neuron symmetric network, followed by
larger networks of random excitatory connection topology, we show that the neural
activity of transient states corresponds to the activity of the former attractor states
without STSP, their duration being, however, determined by the time scales of
plasticity.

In Chapter 4 we introduce the field of locomotion robophysics, engaged in a
quest for revealing general principles in the motion of cognitive artificial agents
situated in a complex environment. We consider simple barrel- and sphere-shaped
rolling robots, their motion being generated indirectly, via damped-spring actuators
moving weights along internally fixed axes. The actuator of the barrel robot is
controlled by a single proprioceptual neuron with internal adaption, while in case
of the spherical robot, a network of three neurons is used with dynamic inhibitory
connections governed by STSP.

The considered robots are fully embodied due to the feedback mechanisms
of the closed-loop control scheme. We show that regular and chaotic locomotion
patters emerge even in case when no dynamics is expected in the subsystem of
the isolated controllers. The observed set of motion patterns are self-organized,
corresponding to stable limit-cycle and chaotic attractors in the combined phase
space of controller, body and environment, being additionally degenerate in the
plane of locomotion. The employment of this attractor picture allows for the in-
terpretation of interactions with obstacles and other agents in terms of switching
between coexisting states of the system.

The thesis is concluded with an outlook on the frontiers and challenges of
present day research in complex dynamical systems, raising also a few ambitious
questions to outline possible research directions for the future.



Chapter 1

General Background

The next great era of awakening of human intellect may well produce
a method of understanding the qualitative content of equations.

Richard Feynman. The Feynman Lectures on Physics (1963)

To understand the dynamical behavior of complex systems, described by a large
number of variables, one has to extend the scope of dynamical systems theory,
dealing typically with low dimensional systems [1]. In this thesis we argue that the
development of new concepts and methods may allow to unveil simple dynamical
principles behind complexity.

Dynamical systems approaches have been recently proposed to be a key tool in
gaining a deeper understanding of diverse complex phenomena such as the activity
patterns emerging in the brain [2, 3] or self-organized embodiment of biologically
inspired robots [11,19]. Further typical areas of study include complex networks [4]
in general, the dynamics of recurrent neural networks [20] in particular, or the con-
trol of multistability [5] with a wide range of applications in different disciplines of
science [6].

In this chapter we briefly discuss the basic concepts and methods of the field
of dynamical systems, introducing the standard notation, which is then consistently
used throughout the following chapters of the thesis. We start with the mathematical
formalism we build on, when investigating the dynamics of more complex systems,
such as neural networks and robots. This involves the introduction of concepts like
flows and maps, attractors and their stability, and bifurcations. That is followed by
some more recent results, concepts and methods suggested for the study of complex
dynamical systems, discussing the importance of multistability, degenerate attrac-
tors, and transient-state dynamics.

15



16 1. General Background

1.1 On dynamical systems
The methods and concepts of dynamical systems theory provide an effective toolkit
and a consistent language to investigate the behavior of various, typically low
dimensional systems, characterized by variables, which may describe physical,
chemical, biological, social or even economical quantities [21].

Complex systems are often modeled by nonlinear equations of motion, which
are typically impossible to solve analytically. A dynamical systems description
allows, however, for the characterization of the long term dynamical behavior (in
terms of attractors) even for randomly chosen initial conditions, the understanding
of the qualitative change of dynamics (due to bifurcations) when varying the control
parameters, or determining the time-span a system remains predictable despite of
the underlying locally irregular (chaotic) behavior, just to mention a few [1, 21].

For deterministic systems, the equations of motion uniquely determine the
present state of a system only from the past states. However, dynamical processes
in complex systems might also be subjected to the effects of noise. The presence of
small noise levels typically results in the blurring of trajectories of deterministic dy-
namical systems, generally without a qualitative change of behavior. Stochastic, or
noisy dynamical systems can show, nevertheless, non-trivial effects, such as tran-
sitions between stable deterministic states, or the excitation of otherwise damped
internal oscillations [1]. Here, in this thesis, we mainly focus on deterministic sys-
tems, mentioning, however, the implications of potential noise sources where it is
applicable.

1.1.1 ODEs and maps
Formally speaking, dynamical systems provide a mathematical description of the
evolution of a systems’ state forward in time [22]. Time here can be regarded
both as a continuous t ∈ R or discrete t ∈ N variable. The state of the system is
defined by the position of the phase point x ∈ Rn in phase space (also called state
space), with n denoting the number of dimensions, spanned by the variables of the
dynamical system, x = (x1, x2, . . . , xn). Mathematically, the time evolution of the
state, denoted by x(t) or xt for continuous and discrete time systems respectively,
can be described in two different ways.

Continuous time systems: are expressed in terms of sets of first order, ordinary
differential equations (ODEs):

ẋ = f(x) , f = (f1, . . . , fn) , (1.1)

where the dot operator is denoting time derivative, ẋ = dx/dt, and f is referred
to as the right-hand-side (RHS) of the differential equation, with fi : Rn → R. If
the system is deterministic a given initial condition x(0) uniquely determines the
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complete time evolution of the state, referred to as an orbit or a trajectory, tracing
out a one-dimensional curve in the phase space of the system. The dynamics of
the phase space is often termed as the flow, since it is analogous to the behavior of
particles in the flow of some fluid.

Discrete time systems: a set of functions map the system’s state between con-
secutive time-steps t and t+ 1:

xt+1 = m(xt) , m = (m1, . . . ,mn) . (1.2)

where m is called the map, with mi : Rn → R. The orbit generated by a map
corresponds to a sequence of states, x0,x1,x2, . . . , which typically jump discon-
tinuously in the allowed space of states.

Continuous time dynamical systems can, in principle, always be reduced to
discrete time maps. This is most often done by the technique called Poincaré
surface section. For that we introduce an nP = n − 1 dimensional hyperplane
(typically defined by a constant xP

i = c with c ∈ R), and register the coordinates
x̂t ∈ RnP where the trajectory intersects the plane. Since consecutive intersec-
tion points are uniquely determined by the flow (1.1), we get an equivalent map,
x̂t+1 = m̂(x̂t), termed as Poincaré map [22]. Another way to create a map is to
sample stroboscopically the trajectory at times tk = t+kT for k = 0, 1, 2, . . . , with
a conveniently chosen sampling rate T . Denoting xt = x(tk), we can define again a
map of consecutive snapshot states. The usage of stroboscopic maps is more useful
for the study of periodically driven motion [23].

Autonomous systems: do not explicitly depend on time, hence the law for future
states is written in terms of the present state [24]. Formally this means that the
time does not appear explicitly in the right-hand-side of the ODE (1.1) or of the
map (1.2) defining the dynamics of the system.

Nonautonomous systems: correspond generally to driven or modulated systems,
for which the RHS of the equations of motion are time dependent. Therefore, the
actual state of the system, unlike for the autonomous case, depends on both the
actual and the initial times, t and t0, respectively, and not just on the elapsed time
since starting t − t0 [25]. Note that this distinction is somewhat artificial, since
any nonautonomous system, for which time t explicitly appears on the RHS of the
ODE or map, respectively, can be written as an autonomous system by defining
a new independent variable, describing the progress of time. Nevertheless, over
the recent years, it has developed into a highly active research field, recognizably
distinct from that of the classical autonomous systems [26].

Since most of the systems we deal with in the thesis are continuous time au-
tonomous systems, we will use in the followings the formalism of ODEs introduced
above, discussing however important properties of maps as well, where it is neces-
sary.
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1.1.2 Phase space contraction
For most dynamical systems of interest, trajectories do not evolve unrestrictedly
towards infinity, but stay in a bounded region of the phase space, even if that is
theoretically unlimited. It is then a natural question to ask how the phase space vol-
ume of an ensemble of state point “particles” evolves under the flow. For bounded
trajectories one would expect non-expanding phase spaces, viz. always keeping the
state points together.

To quantify the rate at which a given phase space volume is changing in a con-
tinuous time system, one can calculate the time derivative of the volume V (t) of an
infinitesimal hypercube around point x, subject to the flow f . It is easy to show (see
Sec. A.1 in the Appendix) that the phase space contraction rate σ(x) of continuous
time systems is given by the divergence of the RHS function [22]:

σ(x) = ∇ · f(x) = tr(Jf (x)) ,
dV (t)

dt
= σ(x)V (t) , (1.3)

which is equivalent to the trace of the Jacobian matrix of the flow f :

Jf =
∂(f1, . . . , fn)

∂(x1, . . . , xn)
=
∂f

∂x
, (Jf (x))ij =

∂fi(x)

∂xj
. (1.4)

A negative contraction rate σ(x) < 0 corresponds to the exponential shrinking of
the phase space volume V , while a change of sign, i. e. σ(x) > 0, refers to the
(exponential) expansion of V .

In case of maps a given phase space volume Vt at time t might change signifi-
cantly by step t + 1 within a single iteration. Considering a map m, as defined by
Eq. (1.2), the Jacobian matrix

Jm =
∂(m1, . . . ,mn)

∂(x1, . . . , xn)
=
∂m

∂x
, (Jm(x))ij =

∂mi(x)

∂xj
, (1.5)

describes the how points move close to x. More precisely, the absolute value of the
Jacobian’s determinant gives the factor by which an infinitesimal volume shrinks or
expands [22]:

σ(x) = | det (Jm(x))| , Vt+1 = σ(x)Vt , (1.6)

with σ(x) denoting again the contraction rate. A σ(x) < 1 corresponds to the local
contraction, and σ(x) > 1 indicates the expansion of phase space.

In general the contraction rate σ(x) is a local quantity. There are, however,
systems for which every point of the phase space is contracting/expanding due to
the flow. As an example we consider the dynamics of a particle of unit mass:

ẍ + γẋ +∇V (x) = 0 ,
ẋ = v

v̇ = −γv −∇V (x)
(1.7)
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with x = (x1, x2, x3), in the presence of velocity dependent friction forces, −γv,
in the potential V (x). The phase space contraction rate:

σ = ∇ · f(x) = −γ , (1.8)

is determined solely by the friction coefficient γ, and it can be considered, hence,
the generalization of the change of the system’s total energy:

Ė = −γ|v|2 , E =
|v|
2

2

+ V (x) . (1.9)

Based on this example, dynamical systems can be categorized according to the
nature of the phase space contraction.

Dissipative systems: have a contracting phase space, σ(x) < 0. For mechanical
systems like Eq. (1.7) this corresponds to the presence of a friction force with
γ > 0 in the equations of motion, leading to the loss of total energy via dissipation,
Ė < 0. An overall contracting phase space might seem to be very restrictive in
terms of how volumes of initial conditions are shaped via time evolution. It turns
out, however, that contraction does not preclude the presence of stretching mech-
anisms, allowing for rather strangely shaped geometrical objects. This is possible
if the stretching experienced in one direction is compensated by an even stronger
contraction perpendicular to it [23].

Conservative systems: are corresponding to Hamiltonian systems, with
σ(x) = 0, characterized by constants of motion, where the loss of energy can
be neglected. Returning to the example of the particle with unit mass, see Eq. (1.7),
the frictionless case with γ = 0 results in the conservation of energy, Ė = 0 and
E = const.

Expanding systems: have a positive phase space contraction rate, i. e. expansion
with σ(x) > 0, everywhere in the phase space. That would correspond to an
anti-dissipative friction term with γ < 0, due to energy uptake from some external
source, Ė > 0. Expanding systems have no bounded trajectories, leading to the
infinite growth of the variables. Hence, in this case, most of the phenomena of
general interest are only transient.

Adaptive systems: are characterized by the coexistence of dissipative and anti-
dissipative regions of phase space [1]. Generalizing now the mechanical system
(1.7), introducing a position dependent parameter γ = γ(x), the sign of γ would
regulate, hence, the different regions of phase space contraction/expansion. Adap-
tive systems turn out to be the most general case of complex systems, allowing for
phases of energy dissipation, and also for energy uptake from the environment. In
Chapter 2 we introduce a new class of adaptive systems, similar to (1.7) but with a
generalized mechanical potential, where the regions of energy uptake and dissipa-
tion can be controlled directly by changing the parameters.
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1.1.3 Attractors
Considering the case of dissipative dynamical systems, with an overall contracting
phase space, one could wonder where all the trajectories go as they are evolving
under the flow. Due to the nonlinear nature of the functions involved in the dynam-
ical description of many complex systems, a complete analytical treatment of the
evolution of trajectories is often impossible. The study of the asymptotic behavior
of typical orbits allows, however, for a geometrical characterization of the long
term dynamics, leading to the concept of attractors.

Attractors or attracting sets: are bounded subsets of the phase space, to which
many initial conditions evolve asymptotically as time increases (line and plane
attractors are discussed separately in the context of degenerate attractors). The
attractors are invariant under forward time translation, i. e. under the effect of the
flow or the map [22]. This means that the evolution of all the points belonging to
it, viz the attracting set, yields the same attractor. The union of all orbits which
converge towards the attracting set is termed as the basin of attraction or attraction
domain. A finite basin of attraction around the attractor affords dynamical systems
to be stable against small perturbations. The phase point, already settled on the
attractor, would deviate from it temporarily when noise, or a small perturbation is
present, returning afterwards and staying on it as a result of forward invariance.

Dissipative systems, in contrast to conservative and expanding ones, are char-
acterized by the presence of attractors in the phase space. The phase space of
adaptive systems, though it is not as obvious as in the other cases, might also posses
attractors. These attracting sets may be embedded in locally dissipative phase space
regions, or more interestingly, may be stretched over different contracting and
expanding zones as extended geometrical objects. In the latter case a self-organized
energy balance is achieved by visiting both regions of energy uptake and dissipa-
tion [1, 7].

According to the above definitions, trajectories starting from initial conditions
in the attraction domain converge to the attractor, tracing out its geometrical struc-
ture. Not all invariant sets are, however, attractors. Trajectories started exactly on
non-attracting invariant sets remain “trapped” there, but deviate fast from them even
under small perturbations. Other orbits with typical initial conditions may only
trace them out temporarily, being repelled far away in the phase space. Since the
variation of the system’s parameters can lead to the destabilization of attractors, it
is important to study the regions of stability in the parameter space. It is interesting
to note that close to the border of stability, even non-attracting invariant sets might
play an important role in the behavior of complex adaptive dynamical systems, like
agents exploring their environment [14, 15]. This aspect of the role of attractors for
robotic behavior is emphasized in Sec. 4.3 of Chapter 4.

Attractors may be simple geometrical objects, such as points, lines and surfaces,
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or more complicated fractal structures. One typically differentiates between four
main types of attractors, in terms of their geometry. In the following a brief defini-
tion is given of the attractor types, together with the introduction of the formalism
used for stability analysis.

Fixpoints or equilibrium points: are distinct invariant points of the phase space,
denoted typically by x∗, where the flow vanishes, f(x∗) = 0, or equivalently for
maps, points, which are mapped into themselves, x∗ = m(x∗). Hence, by defini-
tion, fixpoints are sets of dimension zero. To investigate the stability, the flow can
be linearized at x = x∗ + δx with |δx| → 0:

ẋ = f(x) ≈ f(x∗) + Jf (x
∗)δx + . . . , (1.10)

where Jf (x
∗) denotes the Jacobian matrix, as defined by (1.4), evaluated at x∗. In

the first order approximation the time evolution of small perturbations of the fixpoint
state is simply given by the solution of a linear ODE:

˙δx = Jf (x
∗)δx , δx(t) =

n∑
i=1

civie
λit , (1.11)

where vi ∈ Cn and λi ∈ C are respectively the eigenvectors and eigenvalues of
the constant Jacobian Jf (x

∗), while the coefficients ci are determined by the initial
conditions. When all the eigenvalues have negative real parts, Re(λi) < 0 for
i = 1, . . . , n, the perturbation vanishes asymptotically, δx → 0. These fixpoints
are called stable node/focus, when all eigenvalues are real/at least one eigenvalue
is complex, respectively. However, due to the exponential time dependence, the
existence of a single eigenvalue with positive real part, Re(λ1) > 0, results in
the growth of infinitesimal perturbations, making the fixpoint unstable. Fixpoints
with both positive and negative eigenvalues are called of saddle type. The stability
analysis of equilibrium points of maps is analogous to the one presented here, and
it is briefly discussed in the next paragraph.

Limit cycles and periodic points: describe sustained periodic motions, charac-
terized by a certain period T . In continuous time dynamical systems, limit cycles
are isolated periodic orbits, defined by x(t) = x(t + T ), a set of dimension one,
embedded in the n ≥ 2 dimensional phase space. Since limit cycles are typically
closed orbits, using the Poincaré section technique presented in Sec. 1.1.1, but only
registering intersection points in one direction, the periodic attractor reduces to a
fixpoint x∗t+1 = m(x∗t ) = x∗t , with x∗t ∈ RnP , of the nP = n − 1 dimensional
Poincaré map (dropping the hat notation, m = m̂, for simplicity). The stability
of the limit cycle hence can also be studied in terms of fixpoints of maps, using a
linearization procedure analogous to Eqs. (1.10) and (1.11), but expressing the time
evolution of the perturbation δxt ∈ RnP as a linear mapping, with |δx0| → 0:

δxt+1 = Jm(x∗)δxt , δxt =

nP∑
i=1

civiλ
t
i . (1.12)
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The eigenvectors and eigenvalues vi ∈ CnP and λi ∈ C respectively, correspond to
the constant Jacobian Jm(x∗) (see Eq. 1.5) of the Poincaré map for point x∗. The
coefficients ci are determined from the initial conditions. Fixpoints, and hence limit
cycles, with all |λi| < 1 are called stable. Eigenvalues |λi| > 1 lead to deviations
from the unstable or saddle type equilibrium states. The eigenvalues arising from
the linearization of Poincaré maps are sometimes also termed as (Floquet) multipli-
ers [24].

In case of multiple intersection points, viz. a finite number of points visited in a
sequence, x∗t → x∗t+1 → . . .→ x∗t+p = x∗t , we get a period p > 1 orbit, which is in
turn an equilibrium point of the p th iterate Poincaré map, x∗t+p = m(p)(x∗t ) = x∗t .
The Jacobian matrix of the map m(p) can now be expressed using the generalized
chain rule as a product of the original Jacobians Jm,

Jm(p)(x∗t ) = Jm(x∗t+p−1) · Jm(x∗t+p−2) · . . . · Jm(x∗t+1) · Jm(x∗t ) , (1.13)

evaluated at the p points of the orbit. This means that the stability of the limit
cycle is a property of the periodic orbit as whole, not only of individual points [24].
Finally, we would like to stress that, although we have discussed above the stability
of Poincaré maps, the stability arguments apply to maps in general as well.

Saddle type fixpoints or limit cycles of flows (or respectively of maps), are not
stable, i. e. by using typical initial conditions they can never be approached asymp-
totically, but only transiently. There are, however, smooth manifolds of zero phase
space volume, defined as the set of points x which evolved forward/backward under
the flow (map) approach the saddle, called unstable/stable manifolds. Since these
manifolds have no volume extension, typical initial conditions do not start from
them [23]. Close to the fixpoints and limit cycles the stable/unstable manifolds are
tangent to subspaces spanned by the eigenvectors corresponding to the eigenvalues
with negative/positive reals parts, respectively [24].

Torus attractors: are characterized by more than one frequency, which form
irrational, i. e. incommensurate, fractions. Therefore, the orbit of the flow can
not close in itself, creating an invariant torus in the n ≥ 3 dimensional phase
space. The dynamics on a torus is called quasiperiodic (it is not strictly periodic).
While the power spectrum of periodic motion is characterized by delta peaks at the
integer multiples of the fundamental frequency ω0 = 2π/T , in case of tori we find
peaks at several different fundamental frequencies which are incommensurate [22].
Quasiperiodic motion plays a central role in Hamiltonian systems, occurring fre-
quently in case of dissipative or adaptive dynamical systems as well.

The attractors discussed so far are simple geometrical structures: single points
as fixpoints (sets of dimension D = 0), closed curves as limit cycles (sets of
dimension D = 1), or closed (D < n dimensional) surfaces. It turns out, however,
that invariant sets forming the attractors may also have self-similar fractal struc-
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tures, called strange attractors, which are characterized by a non-integer fractal
dimension, D /∈ N. Fractal structures, a term introduced by Mandelbrot [27], have
strongly ramified surfaces and perimeters. Their surface area or perimeter length is
increasing with resolution, hence one can not characterize their dimensionality in
the traditional way. The fractal dimension provides a straightforward generalization
for the concept of dimension by quantifying how the result of the measurement is
scaling with resolution, and allowing fractional and irrational values as well [23].
The box-counting method, a relatively simple method to compute the fractal di-
mension of strange attractors emerging in dynamical systems is described briefly in
the Appendix A.2.

Chaotic attractors: are invariant sets of complex, fractal structures, on which a
never recurring, unpredictable sustained motion takes place. The fractal structure of
the attractors is a result of the nonlinear equations of motion, which generate irreg-
ular dynamics, exhibiting sensitive dependence on initial conditions. Small changes
or perturbations of the current trajectory lead to significantly different future states,
making the prediction of the behavior impossible in the presence of any numeri-
cal or measurement error. This unpredictability manifests itself in the exponential
divergence of perturbations (in a similar manner to perturbations close to unstable
fixpoints, see Eq. 1.11) characterized by the maximal Lyapunov exponent λm of the
system. The largest (maximal) Lyapunov exponent is defined in the limit of infinite
time, which in the continuous time case reads as:

λm = lim
t→∞

1

t
ln
|δx(t)|
|δx(0)|

, (1.14)

describing the logarithmic growth rate of initially infinitesimal perturbations δx(t),
with δx(0) → 0. Note that λm is independent of the starting point x, and also of
the direction of the initial perturbation δx(0) for all typical trajectories, hence it is
a quantity characterizing the attractor itself. The attractor is defined to be chaotic
if the maximal Lyapunov exponents is positive, λm > 0 [22]. As we have seen in
case of simple attractors, the stability of an orbit (on the attractor) is determined by
the eigenvalues of the Jacobian matrix evaluated at the fixpoints or at the periodic
points (see Eqs. (1.11), (1.13)). These quantities can be generalized for chaotic
trajectories as well, by studying the exponential divergence of perturbations along
non-typical, orthogonal initial directions δx(0) using Eq. (1.14). This leads to the
Lyapunov spectrum, λ1 > λ2 > · · · > λn, consisting of n Lyapunov exponents,
with the largest one being equivalent to λm = λ1. One can define the Lyapunov
exponents λk analogously to Eq. (1.14) as discussed in Appendix B.3.

The limit t→∞ used in Eq. (1.14) is rather impractical for the numerical com-
putation of the largest Lyapunov exponent λm, since using finite initial displace-
ments δx(0), the exponential growth of perturbations δx(t) can only be observed
over finite times, before reaching distances comparable to the size of the attractor.
As a more practical approach one can consider instead an averaging over pairs of
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trajectories x1,2(t) choosing initial conditions distributed on the attractor accord-
ing to the natural distribution [23]. The maximal Lyapunov exponent can then be
determined from the initial slope of the logarithmic distance,

〈ln |x1(t)− x2(t)|〉 ≈ λmt+ ln δ12 , (1.15)

averaged over many trajectory pairs x1,2(t) of very small initial separation
δ12 = |x1(0) − x2(0)| � 1. A good averaging over initial conditions of pairs
of trajectories can be achieved by using a very long reference trajectory x1(t) and
“pushing-back” the second orbit x1(t) to a suitably small initial distance δ12, when-
ever they get separated to a distance comparable to the size of the attractor [23].
There are many, more sophisticated methods in the chaos literature for determining
the largest Lyapunov exponent for maps and flows, or for computing the full Lya-
punov spectrum (for an overview see e. g. [28]).

Chaotic dynamics is defined as unpredictable due to the sensitive dependence on
initial conditions. There are however partially predictable chaotic (PPC) attractors,
characterized by positive Lyapunov exponents, nevertheless allowing for a rather
high degree of predictability for exceedingly long time-scales [29]. The generated
time-series can be hence sometimes very difficult to distinguish from a periodic
behavior. In another work [29] (not discussed here in detail), we have introduced
a novel method as a possible resolution of this problem, namely for distinguishing
chaotic attractors and limit cycles, and discriminating further between strong and
partially predictable chaos. Furthermore, in Sec. 4.3 of Chapter 4 we present
an example of PPC found in the locomotion of rolling robots, which allows for a
smooth exploration of complex environments.

Finally, for investigating the dynamics of complex systems, it is often more
convenient to change from one coordinate system to another. This is plausible since
fixpoints of a dynamical system do not change their stability upon general coordi-
nate transformations. More precisely, the eigenvalues of the Jacobians, Jf or Jm,
characterizing the stability of fixpoints and periodic points, are invariant under these
transformations [24]. As a consequence of that one can freely choose the coordinate
system, viz the preferred variables to model a specific behavior. This is however not
true for general points in the phase space. Thus, the volume contraction in some re-
gion of the phase space, characterized by the sum of eigenvalues, i. e. the trace of
the Jacobian (see Eq. (1.3) in Sec. 1.1.2), can depend on the chosen coordinate sys-
tem. In Appendix A.4 we provide a proof, discussing both continuous and discrete
time dynamical systems.

1.1.4 Degenerate attractors and multistability
Multistability: the coexistence of multiple attractors offers a great flexibility for
modeling complex dynamical behavior. Multiple stable states allow for switching
between attractors as a result of controlled or noisy inputs, an indispensable prop-
erty, to give a few examples, for modeling the survival of species in the ecosystem,
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for implementing memory in neural networks, for understanding climate dynamics
or the dynamical processes in social-political systems (see [5] for a recent review).
Multistable systems may generally be very sensitive to perturbations [30], or to the
change of initial conditions [31] and system parameters [32]. This sensitivity might
be particularly pronounced in case of attractors with small basins of attraction,
leading often to sudden switches to unexpected or previously unknown attractors.
Such jumps can generate catastrophic events, such as climate changes, diseases or
financial crises [33]. In Sec. 2.2 of Chapter 2 we introduce a design procedure for
constructing multistable dynamical systems by placing fixpoint, limit cycle or even
chaotic attractors to predefined positions in the phase space.

In case of the most common dynamical systems there exist unstable manifolds,
emanating from saddle fixpoints, which attract other trajectories and drive them to
the corresponding attractors. The presence of these manifolds allows for a relatively
easy identification of the existing attractors of a system. It has been shown, how-
ever, that multistability is often connected with the occurrence of so called hidden
attractors, with attraction domains which are not close to any saddle points [34].
Therefore, hidden attractors typically have very small basins of attraction, making
them difficult to reveal using traditional numerical approaches [35].

The size of the attraction domain is hence an important quantity, providing
information about the probability of landing on one of the multiple attractors
when random initial conditions are considered [36]. Following this idea, the basin
stability concept has been proposed as a complementary quantity to characterize
stability of states against arbitrary (possibly non-small) perturbations [37]. A simi-
lar method estimating the weakest perturbation capable of disrupting the dynamics
is the stability threshold approach [38]. Using these quantities alongside with the
traditional linear stability analysis, might enable a deeper understanding of many
puzzling dynamical behavior observed in complex dynamical systems.

Degenerate attractors: form a continuum in the phase space of the dynamical
systems [39, 40]. In the traditional view of classical dynamical systems theory,
attractors are bounded geometrical objects, confined within a relatively restricted
region of the phase space [21], One can, nevertheless, also find even autonomous
dynamical systems having a continuum of attractors, for which it takes an arbitrar-
ily small perturbation to move within this manifold, also referred to as continuous
attractors in the biological modeling literature [41].

One example of an attractor with infinite extension is provided by the problem
of sliding on a slope [23]. This second order differential equation

ẍ+ αẋ+
∂V

∂x
= 0 , V (x) = −A cosx− F0x , (1.16)

describes sliding on a bumpy slope, which has an average tilting proportional to F0

and bumps of amplitude A. A skier is subject to a drag of −αẋ, making the sys-
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tem dissipative (see the example of mechanical systems of this type in Sec. 1.1.2).
There are an infinite number of stable and saddle fixpoints, but more interestingly a
periodic attractor as well, corresponding to a stationary downhill sliding with a pul-
sating velocity [23]. The limit cycle is a not a closed orbit, but it has a translational
symmetry with respect to shifting by 2π. This corresponds to a discrete degeneracy
of the attractor. On the other hand, by the replacement x → ϕ in Eq. (1.16) the
degeneracy can be resolved, and one obtains the problem of a pendulum with a con-
stant torque. Nonetheless, the viewpoint with the skier is rather instructive, since
the concept of attractors with degeneracy turns out to be useful when studying lo-
comotion in physical space. It allows for an insightful interpretation of interactions
during physical motion in terms of the temporary abolition of translational symme-
tries [15]. This is discussed in more detail in Chapter 4 in the context of robotic
locomotion.

1.1.5 Transient states
In the previous sections we have discussed equilibria of dynamical systems of
type f(x∗) = 0. The flow, by definition, vanishes at fixpoints, leading first to a
slowing down, and ultimately to the complete stopping of the dynamics. There are,
however, further special, non-fixpoint states in the phase space, i. e. ẋ 6= 0, where
we also see a remarkable slowing down of the flow.

Transient states: are distinct points or locally continuous manifolds in the phase
space, attracting the flow only transiently. Trajectories approaching these manifolds
hence slow down temporarily, staying in their close vicinity while moving gradually
along them, which is then followed by a rapid jump to another quasi-stationary
state [42]. The corresponding time-series representation of the dynamics is charac-
terized by a sequential switching between steady-state plateaus, corresponding to
well-defined states of the system [9].

Several models have been proposed, mainly in the context of cognitive and
computational neuroscience, for generating transient-state dynamics. In the fol-
lowing paragraphs we discuss two classes of systems a bit more in detail, a system
with external input and an autonomously active system. We note, nevertheless,
that similar models are able to generate dynamic cluster patterns with coupled
oscillators [43], or latching dynamics with infinite recursion [44].

Input information may in be encoded in dynamical systems via transient-state
dynamics based on the winnerless competition principle [45]. The corresponding
mathematical image of the phase space structure governing the dynamics relies
on the existence of a stable heteroclinic channel, consisting of a chain of saddle
(metastable) states which are connected by heteroclinic orbits. The sequence from
the neighborhood of one saddle point to another one occurs, when the saddles are
characterized by a single positive eigenvalue. Furthermore, the sequential dynam-
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ics may be open ended in the sense that it does not repeat itself [46], or it may
also be periodic, corresponding to a heteroclinic contour [47]. This general class
of nonautonomous dynamical systems has been successful in modeling decision
making processes [48] or the chunking dynamics required for short-term memory
storage [49]. For a review of applications in modeling different brain functions see
Ref. [50]. We note, however, that the heteroclinic connections, the building blocks
of open heteroclinic channels and heteroclinic contours are not structurally stable,
hence, these can only occur either for special parameter values or for systems of
some specific form [3, 47].

Transient-state dynamics may also be produced in autonomous dynamical sys-
tems without heteroclinic connections, by coupling local, slowly adapting variables
to a multistable system. In this view, transient-states correspond to slow manifolds
or attractor ruins, generated from the original stable attractors, due to the coupling
of the additional variables. In this context, clique encoding networks have been
proposed as a possible model of attractor networks for generating transient-state
behavior [9, 51]. The term clique encoding refers to the representation of infor-
mation by the activity of a fully connected subgraph of nodes, which during the
transient-state dynamics are sequentially reactivated. The dynamics of the slow
variables may be defined in a top-down approach, via generating functionals encod-
ing the information content of neural firing rates [52,53]. Alternatively, biologically
realistic synaptic plasticity rules may also account for the presence of slow local
variables [51].

1.1.6 Bifurcations
The stability of solutions of ODEs and maps may change abruptly as a function
of the control parameters. For example, when a fixpoint becomes unstable the
behavior of the system changes suddenly, since the trajectory is either “pushed”
to another attractor of the system or repelled to infinity, making the dynamics
unbounded.

Bifurcations: of dynamical systems are qualitative changes of the dynamics pro-
duced by slowly varying parameters, which is accompanied by a topological change
of the flow in the phase space [54]. Bifurcation theory studies and classifies these
different phenomena arising from smooth shifts of the parameters, by analyzing the
ubiquitous patterns of bifurcations. One may divide bifurcations in two principal
classes [1]:

• Local bifurcations can be characterized by the changes in the local stability
properties of fixpoints and limit cycles.

• Global bifurcations occur, on the other hand, when extended invariant sets of
the system collide with each other, or with other equilibria of the phase space.
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Bifurcations occur both in continuous and discrete-time systems. Here, we briefly
discuss a subset of possible bifurcations of flows, the discrete-time counterparts
being analogous to ones presented here.

Saddle-node bifurcation: is a local bifurcation in which two fixpoints collide
and annihilate each other. The term saddle-node refers to the most often encoun-
tered case, involving the collision of a stable node and a saddle point. In a more
general context it is also called a fold bifurcation. As it results in the complete
disappearance of a previously stable state it often associated with hysteresis loops
and catastrophic changes in the system [1].

Pitchfork bifurcation: the system transitions from one fixpoint to three fixpoints.
In continuous-time dynamical systems pitchfork bifurcations occur generically in
systems with symmetry. Depending on the stability of the fixpoints involved in the
bifurcation, one may observe two distinct types. In case of supercritical pitchfork
bifurcations a stable fixpoint is destabilized, while two stable symmetric states
are created, generating a multistable system. In the subcritical case the opposite
happens, an unstable fixpoint branching into one stable and two unstable ones.

Hopf bifurcation: is the birth of a periodic solution, when a focus type fixpoint
switches its stability via a single pair of purely imaginary eigenvalues. In the
supercritical case, a small amplitude stable limit cycle branches from the fixpoint,
resulting in stable oscillations around the unstable equilibrium. In subcritical Hopf
bifurcations a stable fixpoint is generated, surrounded by an unstable periodic orbit.

Homoclinic bifurcation: is a global bifurcation occurring when a limit cycle
collides with a saddle point. When changing the bifurcation parameter the periodic
orbit grows until it touches the saddle point, generating a homoclinic loop in which
a stable and an unstable manifold unite in an orbit of infinite duration. When the
parameter increases further, the limit cycle disappears completely.

Period-doubling bifurcation: corresponds to the creation or destruction of a
limit cycle with twice the period of the original orbit, which is in turn destabi-
lized. This local bifurcation of periodic orbits has a special status among other
bifurcations, since it often occurs in a period doubling cascade as the parameter is
varied further and further. The infinite sequence of doublings generally leads to the
creation of a chaotic attractor, with a never recurring dynamics of infinite period.
The chaotic attractor then consists of, among others, an infinite number of unstable
limit cycles with different periods.

Saddle-node of limit cycles: is a local bifurcation in which two limit cycles
collide and annihilate each other. Considering the Poincaré map of the periodic
orbits, it reduces to a fold bifurcation of equilibria for maps.
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In Chapter 2 we introduce a prototype dynamical system which allows for the
generation of all the here listed bifurcations. To demonstrate its versatile applicabil-
ity, we present examples of Hopf, homoclinic and saddle-node bifurcations of limit
cycles. Furthermore, we illustrate the (intermittent) dynamics of a chaotic attractor,
generated via a sequence of period doublings.

1.1.7 Famous experimental setups
Finally, we present three examples of dynamical systems, which have also been
investigated experimentally. Experimental physicists engaged in studying chaos
in real systems often look for period-doubling cascades, since that is probably the
most easily recognizable route to chaos for a dynamical system.

Van der Pol oscillator: was realized by Balthasar van der Pol with an electrical
circuit, using active nonlinear circuit elements [55]. Using dimensionless variables,
the system can be written as :

ẍ− ε
(
1− x2

)
ẋ+ x = 0, (1.17)

where the control parameter ε is setting the frequency of the oscillations. In case
of large damping with ε � 1 the system produces so called relaxation oscillations,
characterized by a slow asymptotic behavior and sudden jumps to another value,
which may be seen as a simple realization of transient-state dynamics.

Duffing oscillator: first studied in the experiment of Moon and Holmes [56], in
which a steel beam is hanging vertically between two magnets fixed to the ground.
Without external forces one would expect two stable states: the tip of the beam
deflected toward one of the two magnets. A strain gauge attached to the beam is
measuring the deflection, which is then converted to a time series signal. When the
apparatus holding the steel beam is oscillating horizontally, one measures a rather
irregular signal. A simple model explaining the irregular behavior was proposed,
called nowadays the forced Duffing equation [22]:

ẍ+ γ ẋ+ (x3 − x) = g sin(ωt) , (1.18)

The first two terms correspond to the inertia, respectively velocity dependent fric-
tion, with friction coefficient γ > 0, while the third term represents the magnetic
and elastic forces. The time dependent sinusoidal right-hand side corresponds to
the shaking of the experimental setup with frequency ω. When shaking is turned
off, g = 0, there are two stable fixpoints x∗1,2 = ±1. The x∗ = 0 is an unstable equi-
libria. Due to the dissipation the system tries to settle to one of fixpoints, x∗1,2 = ±1,
however, due to the sinusoidal buffering it starts to oscillate a aperiodically, leading
to a chaotic behavior.

Chua’s circuit: allows for many dynamical behavior seen in numerical simula-
tions to be implemented in a rather simple manner [24]. It consist of an RLC circuit
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of four linear elements (an inductor, a resistor, and two capacitors) and a nonlinear
diode, which altogether can be modeled [57] with the following set of ODEs:

ẋ = c1(y − x− g(x))

ẏ = c2(x− y + z)

ż = −c3y ,

(1.19)

where x and y represent voltages across the capacitors, z denotes the current on the
inductor, and the linear sections of the g(x) = m1x+(m0−m1)(|x+1|−|x−1|)/2
function, represent different voltage-current regimes of the diode. The g(x) function
is the only non-linear term in the system. Chua’s circuit, studied as a function of the
c3 parameter, exhibits a double Hopf-bifurcation, leading to two coexisting limit-
cycles, which begin a period-doubling cascade route to chaos. First, two separate
chaotic attractors are created, which eventually merge in crisis.



Chapter 2

A new prototype system with
multistability

Sándor, B., & Gros, C. (2015). A versatile class of prototype dynamical systems for
complex bifurcation cascades of limit cycles. Scientific Reports, 5, 12316.

In Chapter 1 we introduced the basic methods and concepts of dynamical
systems and chaos theory, arguing that they need to be extended further for the
study of higher dimensional complex adaptive systems. In this chapter we present
a new approach for constructing multistable systems using a mechanistic design
procedure.

First, we give a short introduction to prototype dynamical systems, pointing out
that many of them fall under the same class of equations, and illustrating also how
the control of energy balance can be used for generating bifurcations. Then, a new
class of dynamical systems [7] is proposed, which may be used as prototypes for
the modeling and investigation of complex bifurcation scenario of limit cycles and
chaotic attractors, appearing in other higher dimensional and possibly more com-
plex systems. Based on the idea of controlling the phase space regions of energy
uptake and dissipation, we introduce a novel friction function, depending explicitly
on the mechanical potential, which is in turn characterized by a finite number of
local minima. Following the recipe of defining generalized potential functions,
which allow for setting the positions and heights of the respective minima, one can
design systems with a predefined number of different attractors in the phase space.
Using double-well potential and polynomial friction functions, we demonstrate a
few different scenarios of multistability by constructing their respective bifurcation
diagrams. At the end of this chapter, an analytic proof of the limit cycle generation
is given.

31
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2.1 Introduction to prototype dynamical systems
In the field of dynamical systems theory prototype systems play the role of models,
being generic but simple enough for (at least partial) analytic or straightforward
numerical investigations. The dynamical behavior of prototype systems is primarily
dominated by the main phenomenon of interest, and it can often be understood in
an intuitive manner in terms of energy balance between dissipation and uptake, or
symmetry properties of the systems [7].

Classical examples of prototype systems have contributed significantly to our
understanding of many complex dynamical behavior. The van der Pol oscilla-
tor [1] has been used as a prototype for the study of the generation and control
of relaxation-oscillations, whereas the logistic map and the Lorenz model [22]
are probably the most well known discrete, respectively continuous time systems
generating chaotic behavior. The periodically driven, i. e. non-autonomous versions
of the van der Pol, and of the double-well Duffing oscillators have been investigated
thoroughly, not only in numerical [58–60], but also in experimental studies (see
Sec. 1.1.7) [22].

The normal forms of bifurcation analysis [1,54,61], are prototypes determining
the local bifurcations in a system. The Takens-Bogdanov system [62, 63], to give
an example, provides the normal form for both local, (saddle-node and Hopf), and
global (homoclinic) bifurcations. Furthermore, the homoclinic bifurcation can also
be interpreted in terms of the critical amount of energy uptake needed to overcome
the potential barrier set by the saddle point [1, 7].

Several prototype systems showing interesting dynamical phenomena have
been found by coincidence, or on a trial and error basis. The Lorenz equations, for
example, have originally been derived for modeling thermal convection in the atmo-
sphere, but with the discovery of the underlying unpredictable dynamical behavior,
it has become a paradigm of chaotic dynamics [23]. On the other hand, the Rössler
equations have already been designed with the intention of constructing a similarly
behaving system to the Lorenz attractor, which is however easier to analyze qual-
itatively [64]. Continuing this line of work, in the past two decades a great deal
of three and four dimensional chaotic attractors have been proposed leading to a
classification between double-scroll [57,65,66] and multi-scroll [67] attractors. The
deployment of this versatile zoo of chaotic systems lead to the elaboration of sys-
tematic construction methods in the dynamical systems literature. These methods
involve however either the use of engineering feedback control approaches [66,68],
or of somewhat abstract concepts, such as switching between implicitly defined
manifolds [67] or switching between slow and fast sub-systems [69].

Furthermore, most of the systems discussed so far do not enable the coexistence
of multiple attractors. However, as it has been pointed out by several studies, mul-
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tistability is essential for modeling many complex dynamical phenomena (see [5]
for a recent review). The construction of dynamical systems with an arbitrary
number of (chaotic or limit cycle) attractors has been a long standing problem.
In the endeavor of identifying such cases several different mechanisms, including
the coupling of sub-systems [70] or the use of delayed feedback [71], have been
revealed, which may be involved in the generation of simultaneous attractors. On
the other hand, it is also known that one can observe small parameter regions for
low dimensional systems with multiple simple or strange attractors, a result of the
inherent symmetries characterizing the equations of motion [72, 73].

In contrast to these approaches, we propose here a mechanistic design proce-
dure, based on the generation of attractors via the interaction of generalized fric-
tion and potential functions, a method also accessible for modeling interdisciplinary
problems [7]. The resulting versatile prototype systems are adaptive, allowing for an
explicit control, with a single parameter, of the regions with energy uptake and dis-
sipation. The availability of this control parameter enables the study and generation
of complex bifurcation cascades of limit cycles advancing to a transition to chaos.
Creating a predefined number of potential minima, one can, in principle, generate
arbitrary many attractors, an appealing example for extreme multistability [70].

2.2 Recipes for multistability
In Sec. 1.1.2 we characterized adaptive systems by the coexistence of contracting
and expanding phase space regions. In case of mechanical systems the dilatation
of the phase space would correspond to energy uptake via anti-dissipative forces
(compare Eqs. (1.8) and (1.9)). Hence, considering Liénard type equations,

ẍ− f(x)ẋ+ V ′(x) = 0 , (2.1)

with generalized position dependent friction forces f(x), one can realize different
regions of energy uptake and dissipation along the potential landscape V (x).

A well-known example of Liénard type adaptive systems is the Bogdanov-
Takens system [1],

ẍ− (x− µ)ẋ+ V ′(x) = 0 ,
ẋ = y

ẏ = (x− µ)y − V ′(x) ,
(2.2)

describing the dynamics of a mass point in a potential well V (x) = x3/3 − x2/2
in the presence of the linear friction function f(x) = x − µ. As illustrated in the
top left sketch of Fig. 2.1 the parameter µ divides the potential in two regions, since
the change of the total energy (1.9), and analogously the phase space contraction
rate (1.8),

Ė = (x− µ)y2 , σ(x) = x− µ , (2.3)
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Figure 2.1: The Bogdanov-Takens system (2.2) with the friction function
f(x) = x−µ (top row), and its generalized version (2.4) using f1(x) = µ1−V (x)
(bottom row), compare Eq. (2.6). Left column: The color-coded regions of energy
uptake and dissipation respectively of the potential function V (x) = x3/3 − x2/2,
compare Eq. (2.3). Right column: The flow in the phase planes of the respec-
tive systems at the homoclinic bifurcation point µc, showing typical trajectories
by gray curves. The saddle points at (x∗0, y

∗
0) = (0, 0) and the repelling foci at

(x∗1, y
∗
1) = (1, 0) are indicated by open circles. The red trajectory corresponds to

the homoclinic loop, while on the opposite side of the saddle point the stable and
unstable manifolds are shown by green and blue trajectories respectively.

is negative, corresponding to dissipation (contraction), for x < µ, while an en-
ergy uptake (dilation) is realized for x > µ. Hence, the potential minimum at
x∗1 = 1 is a stable fixpoint of the system, (x∗1, y

∗
1) = (1, 0), when µ > x∗1, being

surrounded by a dissipative region. Decreasing the control parameter µ the fix-
point is destabilized for µ < x∗1, becoming repelling due to the uptake of energy,
leading to limit cycle oscillations. The amplitude of oscillations is increasing
with the growth of the anti-dissipative region, reaching a critical value, with the
mass point escaping via the local maximum x∗0 = 0, for µc. The phase plane plot
corresponding to µ = µc is shown in the top right panel of Fig. 2.1, illustrating
when the limit cycle touches the saddle point (x∗0, y

∗
0) = (0, 0) in a homoclinic loop.

As the example of the Takens-Bogdanov system (2.2) has also demonstrated, a
suitably chosen position-dependent friction function may allow for the generation
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of limit cycle attractors, by controlling the relative extension of the dissipative and
anti-dissipative regions of the potential well. In the following section we propose
a generalization of the Liénard type equations (2.1) with potential functions having
an arbitrary number of local minima.

2.2.1 A new class of prototype systems
The key mechanism in generating a sustained oscillatory behavior in the Takens-
Bogdanov system is the destabilization of the local minima by manipulating the
region of energy uptake. Here we propose a 2d−dimensional generalization of the
Liénard-type systems,

ẍ− f(V (x))ẋ +∇V (x) = 0 ,
ẋ = y

ẏ = f(V (x))y −∇V (x) ,
(2.4)

with d spatial coordinates x = (x1, x2, . . . , xd) and velocities y = (y1, y2, . . . , yd),
respectively. The friction function f(V (x)), depending functionally only the me-
chanical potential V (x), allows for a fine tuned control of the energy dissipation
around the local minima:

Ė = f(V (x)) |y|2 , E =
|y|
2

2

+ V (x) . (2.5)

This class of prototype systems (2.4) is entirely general in the sense that any fric-
tion function of the type f(V ) may be considered, in a combination with poten-
tials V (x), characterized by a certain number of local minima.

2.2.2 Polynomial friction functions
We demonstrate the wide range of realizable dynamical behaviors and bifurca-
tion scenarios by considering the simplest class of friction functions f(V ) entering
Eq. (2.4), namely polynomials of increasing order:

f1(V ) = −α(V − µ1) ,

f2(V ) = −α(V − µ1)(V − µ2) ,

f3(V ) = −α(V − µ1)(V − µ2)(V − µ3) ,

(2.6)

where the parameter α is setting the effective strength of the generalized friction
force. The zeros of the polynomials are set by the µ1 < µ2 < µ3 control parame-
ters, defining the points where dissipation changes to anti-dissipation or vice versa
(compare Eq. (2.5)).

As a first example, we consider the d = 1 version of the prototype system (2.4),
together with the cubic potential V (x) = x3/3 − x2/2, and the first order friction
term f1(V ) (as defined by Eq. (2.6)). The different regions of dissipation and energy
uptake are defined now by the horizontal separation line, set by µ1, as illustrated in
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Figure 2.2: Sketch of a one-dimensional potential function V (x), illustrating the
different possible fixpoint types corresponding to the three minima of different depth
(V3 < V1 < V2): Hopf-point at (x1, V1) (denoted byH), stable focus at (x2, V2), and
unstable focus at (x3, V3) surrounded by a region with energy uptake, when using
the linear friction function f1(V ) characterized by the parameter µ1 in Eq. 2.6. The
corresponding flow in the (x, y) plane is depicted by the sketches above the minima.

the bottom left plot of Fig. 2.1. The resulting flow in the phase space is equivalent
to the one of the Takens-Bogdanov system’s (2.2), also leading to to homoclinic
bifurcation for the critical µc (see bottom row of Fig. 2.1). Another example of
prototype systems of type (2.4) is the well-known Van der Pol oscillator,

ẍ− ε
(
1− x2

)
ẋ+ x = 0 , (2.7)

with a first order polynomial friction function f1(V ) = −ε(2V − 1) and quadratic
potential V (x) = x2/2, where ε is regulating the influence of the friction force.

Considering now the case of general d = 1 dimensional potentials, it easy to
show that the local critical points of the potential function, i.e. where V ′(x∗) = 0,
are always fixpoints of the system (2.4) corresponding to the velocity y∗ = 0. Cal-
culating the corresponding eigenvalues λ1,2 of the Jacobian J,

λ1,2 =
1

2

(
a±
√
a2 − 4d

)
J(x∗, y∗) =

(
0 1
−d a

)
, (2.8)

with a = f(V (x∗)) and d = V ′′(x∗), we see that maxima of the potential func-
tion, viz where V ′′(x∗) < 0, are always saddle points (cf. Fig. 2.1). Local minima,
characterized by V ′′(x∗) > 0, turn into repelling foci, when dissipation changes to
anti-dissipation, f(V (x∗)) = 0, generating a limit cycle as a result of a Hopf bifur-
cation, having a simple pair of purely imaginary eigenvalues λ1,2 = ±i

√
V ′′(x∗)

(see Eq. (2.8)). This is illustrated in Fig. 2.2 with a potential function V (x) char-
acterized by three minima of different levels, V3 < V1 < V2, and a linear friction
function f1(V ). When lifting the barrier (indicated by µ1) separating the different
regions, the fixpoint corresponding to the deepest minimum (x3, V3) is destabilized
first, while the fixpoint at (x2, V2) is still stable. Since µ1 ≈ V1, the fist minimum
(x1, V1) is about to undergo a Hopf-bifurcation.
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Figure 2.3: The construction of generalized potential functions (2.9). Left: Setting
the width of the potential well by using different zm parameters (see the legend)
in the gm(x) = tanh(x2/z2

m) functions. Right: The self-consistent determination
of the pm parameters, defined by Eq. 2.10 for the potential V (x) with M = 3
minima at x1,2,3 = −3/1/4 and heights of V1,2,3 = 0.2/0.5/0.3 respectively for
the left/center/right one. Different colors correspond to consecutive iteration steps
using Eq. (2.10), started from p

(0)
1,2,3 = 1/1/1 non-optimized values. Convergence

is achieved after three steps, p(3)
1,2,3 = 1, 72/0.98/1.68, the relative change of pm

between steps 2 and 3 becoming smaller than 10−2.

2.2.3 Generalized potential functions
The type of the generated attractors can hence also be controlled by setting the
depth Vm of the corresponding local minimum. An arbitrary number of local
minima could also be constructed, in principle, by using higher order polynomials
V (x), these do not allow, however, for a direct regulation of the width and depth of
minima.

Here, we propose an alternative set of generalized mechanical potentials,
characterized by an M number of local minima with predefined positions and
heights (xm, Vm):

V (x) =
M∏
m=1

(
gm(x− xm) +

Vm
pm

)
, gm(z) = tanh(|z|2/z2

m) , (2.9)

where the zm determine the half-widths of the respective wells (see the left plot of
Fig. 2.3). The parameters pm satisfy the

pm =
∏
k 6=m

(
gk(xm − xk) +

Vk
pk

)
(2.10)

self-consistent condition with gk(0) = 0, which can be verified via

V (xm) =
Vm
pm

∏
k 6=m

(
gk(xm − xk) +

Vk
pk

)
= Vm . (2.11)
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Note that the local minima of the potential V (x) are the result of the zero points
of the gm(0) = 0 functions (cf. Fig. 2.3), hence for deep and distinct wells,
with zj + zk � |xj − xk|, the positions and heights are close to xm and Vm
respectively. In Fig. 2.3 we show an example of the self-consistent determina-
tion of the pm parameters for a potential function with three minima, i. e. staring
with an initial guess for p(0)

m , and iterating p
(i+1)
m → p

(i)
m using the map defined

by Eq. (2.10). The experience shows that a convergence corresponding a relative
change of (p

(i+1)
m − p(i)

m )/p
(i)
m < 10−2 can generally be achieved in 3− 4 steps.

2.3 Multistability and chaos in double-well potentials
To demonstrate how the multistability of attractors can be realized in the prototype
system (2.4) we consider generalized potentials (2.9) in d = 1 and d = 2 dimen-
sions.

2.3.1 Limit-cycle generation
First, we start by considering a simple n = 2 dimensional (with d = 1) system,
as defined by (2.4), together with a double-well potential, using first/second/third
order polynomial friction functions (2.6), f1(V )/f2(V )/f3(V ), respectively (see
Fig. 2.4). The local maximum of the potential at x0 = 0 is a saddle type fixpoint
in all the three cases. The stability of the coexisting fixpoint attractors, corre-
sponding to the two minima at x1,2 = ±1 and V1,2 = 0 can be controlled, on the
other hand, by varying the bifurcation parameter µ1 of the friction functions (2.6).
The corresponding bifurcation diagrams, created by using numerical continuation
methods [74], are presented in the right column of Fig. 2.4, showing the existing
stable and unstable fixpoints or limit-cycles, together with the respective bifurcation
points.

For the linear and quadratic friction functions, f1(V ) and f3(V ) respectively,
we observe the generation of two coexisting limit cycle attractors via supercritical
Hopf bifurcations. In case of f1(V ), the limit cycles unite into a large amplitude
cycle by a homoclinic bifurcation, while for a f3(V ) the more complex bifurcation
cascade of limit cycles allows for three simultaneous attractors as well. On the
other hand, with the quadratic friction term f2(V ), two unstable cycles are created
which are, later on, annihilated in a saddle-node bifurcation, when colliding with a
large amplitude limit cycle.

Fig. 2.5 shows the phase plane plots with the different possible stable and
unstable limit cycles, corresponding to the respective µ1 parameters, as indicated
by small arrows in top of the panels of Fig. 2.4. Coexisting stable limit cycles can
be constructed in multiple ways: either as being localized in the separate minima of
the potential, or being embedded in larger overarching attractors.
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Figure 2.4: The prototype system (2.4) using the double well potential function (2.9)
with x1,2 = ±1, V1,2 = 0, z1,2 = 1 and p1,2 = 1, and the friction functions (2.6) f1

with α = 1 (row), f2 with µ2 = 0.6 and α = 5 (middle row), and f3 with µ2 = 0.3,
µ3 = 0.6 and α = 5 (bottom row). Left column: The double well potential function
with the color-coded regions of energy uptake Ė > 0 and dissipation Ė < 0 cor-
responding to the three polynomial friction functions f1,2,3. Right column: Bifur-
cation diagrams as a function of µ1, keeping the other µi (when present) constant.
Stable/unstable fixpoints (limit-cycles) are denoted by the dashed/continuous black
(color) curves. For limit cycles the maximal/minimal amplitude of x is indicated by
the red/green colors. The bifurcation points are denoted by filled color circles: H –
Hopf-bifurcations, HO – homoclinic bifurcations, SNC – saddle node bifurcations
of limit cycles. The dotted, dashed and continuous vertical gray lines are just guides
for the eyes.
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Figure 2.5: Phase plane plots of the systems presented in Fig. 2.4, using re-
spectively the linear/quadratic/cubic friction functions (2.6) f1(V )/ f2(V )/ f3(V )

(top/middle/bottom row), corresponding to the µ(a/b)
1 = 0.1/0.2, µ(c/d)

1 = 0.1/0.11

and µ(e/f)
1 = 0.032/0.04 parameters, also indicated by the small arrows in the cor-

responding bifurcation diagrams of Fig. 2.4. Stable/unstable fixpoints (limit cycles)
are shown again by filled/open circles (continuous/dashed curves). The direction
and length of the arrows in the phase plane plots indicates the flow in the respective
points.



2.3 Multistability and chaos in double-well potentials 41

Figure 2.6: 3-dimensional illustration of the double-well potential V (x1, x2) de-
fined by Eq. 2.12, with a color-coded projection to the (x1, x2) plane, indicating the
depth of the minima (also used in Fig. 2.7). The minima of the potential V (x1,2) = 0
at positions x1 = (+1,−1) and x2 = (−1,+1) are symmetrical with respect to
both diagonals in the (x1, x2) plane.

We speculate, furthermore, that increasing the order of the polynomials used in
the friction function (2.6), an unlimited set of nested limit cycles may be generated.
One can on the other hand also create potentials with infinitely many minima, placed
on a regular grid, or spread randomly along the x axis, hence, the prototype system
provides an appealingly simple technique for realizing extreme multistability [70].

2.3.2 Generating chaos in the 4-dimensional system
More complex dynamics than limit cycle oscillations is not possible in 2-
dimensional flows [22]. Hence, to generate chaos, we have to extend the dimen-
sionality of the phase space. A natural generalization of the previous example, can
easily be realized using Eq. 2.9, by considering now a n = 4 dimensional system,
with a symmetric potential function (with d = 2),

V (x) = g(x− x1)g(x− x2) , g(z) = tanh(4z2/9) , (2.12)

with two minima at x1 = (+1,−1) and x2 = (−1,+1), together with V1,2 = 0, and
z1,2 = 1.5, shown also in Fig. 2.6. Note that the potential (2.12) is symmetric with
respect to both diagonals in the (x1, x2) plane, hence due the structure of Eq. (2.4)
the solutions of the system have to be symmetry related. Namely, if (x1, x2, y1, y2)
is a solution, then

x′1
x′2
y′1
y′2

 = S1,2


x1

x2

y1

y2

 ,


x′′1
x′′2
y′′1
y′′2

 = S3,4


x1

x2

y1

y2

 (2.13)
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Figure 2.7: Trajectories of stable limit cycles and chaotic attractors of the pro-
totype system (2.4) with a two-dimensional symmetric double-well potential V (x),
defined by Eq. (2.12) (color coded as in Fig. 2.6), and with linear friction term
f1(V ) setting α = 1.5 in Eq. (2.6). The parameter µ1 is increased through the val-
ues 0.1, 0.15, 0.25, 0.265, 0.2698, 0.3 for the panels from (a) to (f). The two limit
cycles in panel (a), aligned exactly along the diagonal, merge in a large amplitude
cycle in (b), analogously to the case of the 2-dimensional prototype system (com-
pare Fig. 2.5). In plot (c) we see however the appearance of two symmetry related
orbits, splitting further in (d) into four limit cycles, which can mapped into each
other by the symmetry operations S1,2 and S3,4 (2.14). In panel (e) only one of the
four period-doubled limit cycles is shown, as indicated in the inset. In (f) a short
segment of a chaotic orbit is given.

are also solutions, where S1,2 and S3,4 are denoting reflections with respect to the
diagonals in the (x1, x2), respectively both in the (x1, x2) and in the (y1, y2) planes:

S1,2 =


0 ±1 0 0
±1 0 0 0
0 0 1 0
0 0 0 1

 , S3,4 =


0 ±1 0 0
±1 0 0 0
0 0 0 ±1
0 0 ±1 0

 (2.14)

Here, we present an in-depth study of the generation of attractors using a simple
linear friction function f1(V ) with α = 0.5, as defined by Eq. (2.6). The possible
limit cycle and chaotic solutions, projected to the (x1, x2) plane in Fig. 2.7, are
shown for increasing values (given in the caption) of the µ1 control parameter. To
understand the generation of these attractors a detailed bifurcation diagram, see
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Fig. 2.8, has been constructed using numerical continuation methods [74].

The transitions between the limit-cycles, respectively chaotic attractor, illus-
trated in panels (a)–(f) of Fig. 2.7, correspond to a series of bifurcations, as indi-
cated in Fig. 2.8:

• The fixpoints at the minima of the potential function are stable for µ1 < 0,
being destabilized via the supercritical Hopf bifurcations H1 and H2 for
µ

(H)
1 = 0, generating two small amplitude limit cycles along the diagonal (see

Fig. 2.7(a)). Note that, due to the degeneracy of the Hopf-point (explained
in the following section), there exist two other limit cycles, perpendicular to
former ones, which are however unstable for most of the interval, hence not
shown here. See Fig. B.2 in the Appendix for details.

• The limit cycles merge in a homoclinic saddle bifurcation HO at
µ

(HO)
1 ≈ 0.143. The resulting large amplitude orbit stays, however, for

a range of parameters on the diagonal x2 = −x1 (see Fig. 2.7(b)).

• At µ(SSB)
1 ≈ 0.171 the symmetry of the limit cycle – reflection with respect

to the x2 = −x1 diagonal – is spontaneously broken, which is followed by
another symmetry breaking bifurcation at µ(SSB)

1 ≈ 0.260, destroying the
remaining symmetries corresponding to the reflections about x2 = x1 (see
Figs. 2.7(c, d)). The resulting four cycles are hence related via the S1,2 and
S3,4 operations.

• Increasing the control parameter µ1, we observe a series of period dou-
bling bifurcations. Due to the inherent symmetries of the system, the
period-doubling of the four attractors occurs simultaneously, the first one at
µ

(PD)
1 ≈ 0.268 (in Fig. 2.7(e) showing only one of the obtained double pe-

riod limit cycles), followed by the second one at µ(PD)
1 ≈ 0.270 (see the

inset of Fig. 2.8).

• The period-doubling bifurcations lead to a transition to chaos for
µ1 > µ

(chaos)
1 ≈ 0.2705 (see Fig. 2.7(f) for a trajectory segment on

the attractor). Note that the saddle point of the potential function corresponds
to the V (0, 0) = 0.505 height, hence the appearance of chaos is not directly
related to that.

To identify the chaotic region more precisely, we have evaluated the maximal
Lyapunov exponent λm, as defined by Eq. (1.15), for the corresponding parameter
interval in the bottom row of Fig. 2.8. Asymptotic convergence to fixpoints is
indicated by λm < 0, while the dynamics along limit cycles is characterized by
λm = 0. The chaotic region, with the sensitivity to initial conditions reflected by
λm > 0, is interrupted by many periodic windows, where the exponent drops to
zero again. For the numerical computation of λm we used the method described in



44 2. A new prototype system with multistability

Figure 2.8: The 4-dimensional prototype system (2.4) with the symmetric double-
well potential (2.12) and linear friction function f1(V ) fixing α = 1.5 in Eq. (2.6).
Top row: Bifurcation diagram, with the small arrows indicating the respective µ1

parameters used to obtain the phase plane plots presented in Fig. 2.7. Notations
are as for Fig. 2.4: black (color) continuous/dashed curves – stable/unstable fix-
points (limit cycles), H and HO – Hopf and homoclinic bifurcations, SSB and
PD – spontaneous symmetry breaking and period-doubling bifurcations of limit
cycles. The red/green curves indicate the maximal/minimal x1 values of the respec-
tive oscillations. The chaotic dynamics for µ > 0.2705 is indicated by the red and
green shaded regions. The second branch of limit cycles emerging from the destabi-
lized minima are not shown here (see Fig. B.2 in the Appendix). The right diagram
presents a blow-up of the period-doubling transition to chaos, showing only the first
two PD points (see the gray inset with a zoom-in to the second period-doubling).
After period doubling the second largest amplitude is shown by the blue curves.
Bottom row: The maximal Lyapunov exponent λm (see Fig. B.3 for the computation)
and the average contraction rate σ̄ (defined by Eq. (2.15)), for the corresponding µ1

parameter intervals. The parameter stepsize used of the left plot is ∆µ1 = 0.001.
Further periodic windows, emerging in the chaotic region, with λm = 0, are re-
vealed when increasing the resolution by a factor of ten, as in the right diagram,
corresponding to the zoom-in. The average contraction rate is negative, σ̄ < 0, for
the whole interval investigated here.
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Sec. 1.1.3, with the actual implementation presented in Sec. B.3 in the Appendix.

The here studied prototype system (2.4) is adaptive, hence locally contracting
and expanding regions are alternating along the trajectories. Therefore, we intro-
duce the average contraction rate σ̄, to assess the overall behavior of phase space
volumes in the asymptotic limit. That is the average of local contraction rates σ(x)
(see Eq. 1.3) along a set of trajectories Γi over the attractor:

σ̄ =

〈
1

Li

∫
Γi

∇ · f ds
〉
, σ(x) = ∇ · f , (2.15)

with Li =
∫

Γi
ds denoting the length of the orbit, and with f the respective right-

hand side of the ODE (2.4). As we can see in the bottom panels of Fig. 2.8, the
overall phase space is contracting, σ̄ < 0 for the whole parameter interval. For
µ1 < 0 the stable fixpoints at the minima of the potential are enclosed by a finite
dissipative region, hence σ̄ < 0. However, in case of the periodic and chaotic
dynamics for µ1 > 0, with the trajectory visiting locally expanding phase space
regions as well, the σ̄ < 0 indicates a non-trivial phase space contraction on the
attractors [1, 61].

The maximal Lyapunov exponent λm and the average contraction rate σ̄ are
both quantities characterizing the dynamics of an attractor. In case of multistability,
detached attractors allow generally for a distinct set of λm and σ̄ values. We note,
however, that due to the symmetries S1,2 and S3,4 of the system, one can assign
here the same maximal Lyapunov exponent and average contraction rate to each of
the coexisting limit cycle or fixpoint attractors for a given µ1.

Inspecting the plot of the Lyapunov exponent in Fig. 2.8 a bit more in detail, we
find that at the end of the chaotic region, λm drops drastically, staying however pos-
itive. The corresponding time-series and phase plane plots, shown in Fig. 2.9 unveil
an intermittent underlying dynamical behavior, where periodic-like time-windows
with exceedingly slow oscillations are interposed between the chaotic intervals. The
intermittent quasi-regular oscillations appear when the trajectory revisits the desta-
bilized limit-cycles, embedded into the chaotic attractor along the (−1, 1) diago-
nal (compare the phase plane projections shown in the right panel of Fig. 2.9 and
panel (c) of Fig. 2.7, respectively).

2.4 Hopf bifurcations in the prototype system
In the previous sections we have discussed 2- and 4-dimensional examples of pro-
totype systems (2.4) with double-well generalized potential functions (2.9). As we
have seen, the key mechanism for generating limit-cycle oscillations is the control
of energy uptake and dissipation around the minima of the potential. This view
allows for a mechanistic understanding of how the limit cycle attractors are created.
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Figure 2.9: Intermittent chaotic dynamics for the same system and parameters as
in Fig. 2.8, setting now µ1 = 0.34. Left: Periodic-like window, indicated by the
magenta color in the time-series plot of the x1(t) variable. Note the different time-
scales involved. Right: Phase space projection of the same trajectory to the (x1, x2)
plane. The time window of the slowly oscillating dynamics, corresponding to the
tp = [4 · 103, 12 · 103] interval from the left is indicated here by the orbit-segment of
the same color.

Here, we provide an analytical proof of the Hopf bifurcations in case of general
2d-dimensional prototype systems. In particular, we show that the energy uptake
around the minima leads to the destabilization of the stable focus-type fixpoints,
via turning them into repelling foci.

The fixpoints p∗ of the prototype system defined by Eq. (2.4) correspond to local
minima and maxima of the potential function V (x) and vanishing velocity y,

p∗ = (x∗,y∗), y∗ = 0,
∂V (x)

∂xi

∣∣∣∣
x∗

= 0 .

The stability of the fixpoints (see Sec. 1.1.3) is determined by the eigenvalues of the
Jacobian matrix J, which can be expressed in terms of block matrices:

J(p∗) =

(
Od Id
−Hd aId

)
, (2.16)

where the friction function is denoted by a = f(V ). The Od and Id are d-
dimensional zero and identity matrices, respectively, while Hd defined by

(Hd(x
∗))ij =

∂2V (x)

∂xi∂xj

∣∣∣∣
x∗

(2.17)

is the Hessian matrix of the potential V (x), evaluated at the respective critical
point x∗. Note that the Hessian Hd is a symmetric matrix, hence all of its eigen-
values are real, γi ∈ R. Furthermore, it can be used to determine whether a
critical point is local maximum, local minim, or a saddle point. If the Hessian
is positive/negative definite at x∗, the critical point is an isolated local mini-
mum/maximum. On the other hand, if the Hessian has both positive and negative
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eigenvalues γi then x∗ is a saddle point of the function.

The eigenvalues of the Jacobian J are the solutions of the equation:

det(J− λI2d) =

∣∣∣∣−λId Id
−Hd (a− λ)Id

∣∣∣∣ = det(−λ(a− λ)Id + Hd) = 0, (2.18)

where we used the properties of square block matrices. Introducing the notation

γ = λ(a− λ) , (2.19)

the determinant may be reduced to the

det(J− λI2d) = det(Hd − γId) =
d∏
i=1

(γ − γi) = 0 (2.20)

characteristic polynomial, expressed in terms of the d eigenvalues γi of the Hessian
matrix. Solving Eq. (2.19), the 2d eigenvalues of the Jacobian J can be given as

λ±i =
1

2

(
a±

√
a2 − 4γi

)
. (2.21)

Therefore, the stability of the fixpoints p∗ is determined by the eigenvalues of the
Hessian and by the friction function a = f(V ):

• Saddles and local maxima of the potential function V (x), characterized by
(at least one) γi < 0, are saddle-type fixpoints of the dynamical system (2.4),
always having a corresponding positive eigenvalue λ+

i > 0.

• Local minima of the potential, with γi > 0, are stable fixpoints when energy is
dissipated around them, viz. for negative friction function a = f(V (x∗)) < 0.

• Hopf-bifurcation occurs, with λ±i = ±i√γi, when the friction term changes
sign, viz. for a = f(V (x∗)) = 0.

Stable oscillations can hence be generated by the destabilization of the fixpoint
attractors, via smoothly changing from dissipation to energy uptake in the neigh-
borhood of the minima, using locally decreasing friction functions, f ′(V (x∗)) < 0
(compare Fig. 2.4 and 2.8).

Note that for higher dimensional systems with d ≥ 2 the Hopf bifurcation is
degenerate [54], since all pairs of eigenvalues are crossing the imaginary axis si-
multaneously, Re(λ±i ) = 0. Hence, birth of higher dimensional tori or of multiple
limit cycles may be expected [75]. This is the case for the 4-dimensional prototype
system as well, the generated second branch of limit cycles is, however, only stable
in the closed vicinity of bifurcation, as shown in Appendix B.
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2.5 Discussion
In this chapter, we introduced a new class of prototype dynamical systems (2.4),
which allows for the creation of coexisting fixpoint, limit-cycle and chaotic attrac-
tors. The phase space of the generalized Liénard-type system is spanned by the
d-dimensional coordinates x and the corresponding velocities y. The generation
of multiple attractors is achieved by controlling the regions with energy uptake
and dissipation. Considering potential functions V (x) with multiple local minima,
limit-cycle and chaotic attractors may be created by the destabilization of the fix-
points corresponding to the minima of the potential, via introducing a region with
energy uptake in their neighborhood. That is possible when the generalized friction
function f(V ) depends explicitly on the potential V .

It is generally considered a difficult task to construct dynamical systems with
a predefined number of attractors, placed in predefined regions of the phase
space [69]. As a partial solution of this problem, we proposed a generic class of
potential functions (2.9), characterized by a fixed number of local minima, with
preset positions and heights. Using the friction term f(V ) one may determine
the type of the attractors corresponding to each of the minima of the potential, by
suitably setting the relative height of the minima.

Using simple double-well potentials with one, respectively two spatial dimen-
sions, we have shown that a whole cascade of limit cycle bifurcations can be pro-
duced either via defining alternating regions of energy uptake and dissipation, or,
as in the case of the 4-dimensional prototype system, via symmetry breaking and
period-doubling bifurcations leading to chaos. In case of the chaotic attractor, in-
termittent dynamics has also been observed. We have shown that the generation of
limit cycles via destabilizing the fixpoint attractors does not depend on the particu-
lar shape of the potential function. The only requirement is the existence of a finite
number of local minima. Hence, one could consider for example the biquadratic
version

V (x) →
(
x− x1

)2(
x− x2

)2 (2.22)

of the double-well potential (2.12). We have not studied in detail the bifurcation
diagram of the system, we have checked, however, that it would lead to qualitatively
similar scenario to he one presented in Fig. 2.8. We found that when using the linear
friction function f1(V ), as defined by Eq. (2.6), for increasing values of the control
parameter µ1, spatially separated, merging, and symmetry breaking limit cycles
can also be observed. Furthermore, for extended regions with energy uptake in the
potential well (2.22) chaotic behavior can also be generated.

Multistable systems play an important role in modeling several complex phe-
nomena, ranging from neural dynamics and chemical reactions, to climate dynamics
and social systems [5]. Chaotic systems with coexisting attractors has been pro-
posed as reliable random bit generators, but also allow for the experimental study
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of chaotic synchronization [67]. The here proposed prototype system (2.4) not
only allows to generate multistability, but it also enables the control of the relative
position of the attractors (in the x subspace), either via keeping them spatially sep-
arated or embedding limit cycles and stable fixpoints in each other. Furthermore,
as a future perspective we note that the metadynamics of the attractors [76] may
also be investigated by adding a (maybe slow) dynamics to the positions xm or the
heights Vm of the minima.

The behavior of complex systems is often modeled by dynamical systems, for
which the equations of motion are derived from higher order generating princi-
ples [77, 78]. These methods involve the construction of a general potential or en-
ergy functional [79, 80], the equations of motion then being defined in terms of a
gradient decent rule [81]. When the dynamics is derived from a single global ob-
jective function, the resulting ODE corresponds to a gradient system, for which no
complex attractors can exist, other than stable fixpoints [1]. To allow more com-
plicated dynamics, such as regular or chaotic oscillations, one may consider addi-
tional equations of motions derived from a second generating functional, inducing
objective function stress [52]. The prototype system (2.4) may hence provide an
alternative solution for by-passing this problem, due to the inherent inertia of the
dynamics, resulting from the mechanistic design procedure. Introducing regions of
energy uptake and dissipation by suitably chosen friction functions f(V ), complex
dynamics may be generated in a controlled manner, which is in turn also shaped by
the energy functional.
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Chapter 3

Transient-state dynamics in neural
networks

Sándor, B., & Gros, C. (2017) Complex activity patterns generated by short-term
synaptic plasticity. ESANN 2017 Proceedings, ISBN 978-2-87587-038-4.

One of the most intriguing unsolved problems of present-day science con-
cerns the understanding of the nervous systems as a complex adaptive dynamical
system [1]. The dynamical modeling of neural networks raises however new chal-
lenges for the field of classical dynamical systems theory [8].

In this chapter we argue however that investigating the repertoire of dynamical
behaviors of the nervous system and the key ingredients in generating these specific
dynamics may provide a a complementary approach to the computational neuro-
science methodology [82]. Furthermore, it might also lead to the development
of new valuable methods for the field of nonlinear dynamics. In this context, we
introduce here a new class of recurrent neural networks producing transient-state
dynamics [9] without time dependent external stimuli. We show that short-term
synaptic plasticity [10] may play an important role in generating transient-states
lasting from several hundreds of milliseconds to seconds.

We start by presenting briefly the main challenges in studying the brain in
terms of dynamical systems theory, discussing also the concept of transient-state
dynamics as a typical behavior in several cognitive processes [3]. Furthermore,
the standard models of rate encoding neurons and short-term synaptic plasticity
are also introduced. That is followed by the bifurcation analysis of the system as
a function of a constant global input, allowing for a deeper understanding of how
the transient states and the former attractors of the network are related. Finally,
we present examples of transient-state dynamics in larger random networks, cor-
responding either to regular limit-cycle oscillations or to chaotically fluctuating
activity patterns.

51
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3.1 Introduction to the modeling of neural networks
Computational neuroscience, a field engaged in investigating the nervous system
by means of computational modeling, relies on several different tools and methods
of other scientific disciplines, such as biophysics, information theory, dynamical
systems, machine learning, etc. The dynamical modeling of the brain has a long
standing history with many interesting results, however, traditional methods of
dynamical systems theory are limited in their applicability when it comes to the
understanding of the nervous system.

On one side, the brain has to deal with a great deal of input signals, hence fur-
ther developments of non-autonomous dynamical systems theory [25] is required.
On the other side, even single neurons might show very complex dynamical behav-
iors [83, 84]. Hence, an effective modeling of neural networks is difficult due to
several reasons: a huge number of variables and control parameters exist only with
a partial knowledge of their importance and role, and the general principles govern-
ing the dynamics as well as the network structure (the connectomics of the brain)
are also not fully known (for a review of dynamical principles in neuroscience see
Refs. [8] and [85]).

As a possible resolution for the latter problem several different generating func-
tionals have been proposed to derive the equations defining the network dynamics
in a top-down manner. Promising results have been achieved based on the optimiza-
tion of the firing rate distributions [52,81], or on the stationarity principle using the
Fisher information [86,87]. Furthermore, other objective functions, such as the free
energy for the surprise minimization [79, 88], or the predictive information [89]
for generating explorative and playful behavior with autonomous robots [12] have
also been considered. Bottom-up approaches, focusing on the local biophysical and
biochemical processes involved in the signal transmission or in the homeostasis of
neurons have also been successful in building phenomenological models which can
accurately reflect many experimental findings [90, 91].

The success of either modeling approaches depends on the universality of the
underlying principles governing the dynamical behavior of biological neural net-
works. The methods of dynamical systems theory may help in unveiling these guid-
ing laws by finding the common features even in seemingly different models [82].
Autonomous neural systems are typically dissipative, allowing hence for the pres-
ence of attractors which in turn provide robustness against noise. Attractors also
guarantee some degree of structural stability for small parameter variations, while
bifurcations leading to dynamical switching between different behaviors may serve
as implementations of higher order control mechanisms [84]. Furthermore, input
driven neural networks typically use phenomena such as synchronization, intermit-
tency or resonance [8]
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3.1.1 Transient-states for cognitive processing
The most well-known cognitive-type models are multistable Hopfield-type net-
works [92, 93], characterized by an energy function with many local minima,
allowing hence for multiple coexisting fixpoint attractors. In the framework of as-
sociative memory [94], the idea behind the “computation with (fixpoint) attractors”
concept is based on the transformation of a given input signal, defining some initial
condition, to a desired output corresponding to a fixpoint attractor. Though attractor
networks with stable fixpoint states have been successful in modeling associative
memory related cognitive phenomena, further developments and alternative con-
cepts are required for understanding neural processing mechanisms characterized
by a spatiotemporal dynamics [3].

Experimental results suggest that sequences of transient states, ones in which
no stable fixpoint equilibrium is reached, may better describe the behavior of neural
networks [95–97]. For example, the resting state network dynamics, i. e. when the
brain is not performing any particular task, shows slowly fluctuating spatiotemporal
patterns of consistently activated and deactivated brain regions [2]. Neural ensem-
bles of the sensory cortex also produce centrally generated dynamic sequences of
states, evoked by natural stimuli. Furthermore, these state sequences predict sen-
sory stimuli better than other techniques not using this information [98]. Persistent
reverberations in selective neural populations, corresponding to metastable activity
states, are considered to be the neural correlates of working-memory, also observed
during decision making tasks [50,99]. Finally, place cells in hippocampus [100] and
the high vocal center neurons of songbirds [101] also exhibit sequential dynamics.

These transiently activated states, lasting typically from several hundreds of
milliseconds to seconds [8, 98], can generally be seen as dynamical images of
interacting “brain modes” or “states of mind” [102]. Understanding the temporal
evolution of these states is hence crucially important for the modeling of informa-
tion flows in the brain (for a review of information flow dynamics see Ref. [103]).

Several neural network models have been proposed for generating transient-
state dynamics, as discussed in Sec. 1.1.5 of Chapter 1. In the presence of in-
coming input signals, viz. in the nonautonomous case, the dynamics may be non-
stationary, hence attractors may never be reached exactly [3, 50]. In this case, se-
quential switching between transient states may be constructed based on the idea
of following a heteroclinic channels [45] or contours [47] connecting saddle type
fixpoints or limit cycles in the phase space. For autonomous systems, transient-
state dynamics corresponds to a single complex, periodic or chaotic attractor in the
full state space of the network. One may hence consider attractor networks cou-
pled to slow, local variables [9]. Due to the additional slow dimensions, the former
attractors reduce to slow manifolds, acting like transiently attracting states [42].
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Figure 3.1: Sketch of a chemical synapse, showing the presynaptic bouton of the
axon, the synaptic cleft and the post-synaptic dendrite. Illustrated is the release of
neurotransmitters from the vesicles ϕ, a process triggered by the increase of Ca2+

concentration u as a result of the elevated presynaptic neural firing rate y.

This metastability may also be interpreted in terms of a dynamically changing
attractor landscape [104].

Here, we follow the latter approach in generating transient-state dynamics in
autonomous recurrent neural networks. In particular, we incorporate short-term
synaptic plasticity in the network, which plays an important role in the behavior
of biological neural systems [10]. Hence, in the following section we provide a
brief summary of the terminology employed in the field, which is followed by the
introduction to the mathematical models used for constructing the differential equa-
tions governing the dynamics of the individual neurons and their interactions in a
network.

3.1.2 Neurons and synaptic plasticity
Neurons are responsible for the integration and transmission of electrical and chem-
ical signals in the nervous system [105]. This information transmission is realized
via synapses, which are electrical or chemical connections between the axon of the
sender (presynaptic), and the dendrite of the target (postsynaptic) neuron. Here we
focus on chemical synapses, which use neurotransmitters (amino acids, peptides) in
order to allow the transmission of signals. For an illustration of a chemical synapse
see the sketch in Fig. 3.1.

Neurotransmitters are stored in synaptic vesicles, which are gathered above
the membrane of the presynaptic boutons (axonal swellings). When the neuron
generates an action potential, the voltage gated calcium channels open. Since the
concentration of Ca2+ ions is much higher outside of the cell than inside, calcium
flows into the terminal. As a result of that, among many other processes, neuro-
transmitters are released and diffused across the synaptic cleft where they bind to
the corresponding receptors in the membrane of the dendrite.
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Depending on the type of the released neurotransmitters the postsynaptic neu-
rons may be influenced either in an excitatory (glutamate neurotransmitters) or
inhibitory (GABA neurotransmitters) way [106]. The dendrites of neurons typi-
cally gather incoming pulses from thousands of other neurons. If the integrated
excitatory influence is greater than the inhibitory one, the postsynaptic neurons will
also fire, generating their own action potential.

The connections between neurons are not static, as time evolves new synapses
are created, furthermore, their effectiveness is also varying. The synaptic efficacy
measures the impact of a firing presynaptic neuron on the activity of the postsy-
naptic one. Synaptic plasticity refers, hence, to the process of changing synaptic
efficacy or synaptic strength. Other quantities, corresponding to intrinsic parame-
ters in neurons, may also be time-dependent. The adaption of internal parameters
is referred to as internal plasticity. Several different plasticity mechanisms are
known to exist, some are characterized by time scales of seconds, while others may
have long lasting effects. Long-term depression and long-term potentiation, mainly
occurring at excitatory synapses [107], are plasticity mechanisms lasting minutes
or more [108]. More recent experimental developments have shown, however, that
the effects of short-term plasticity can only be observed on reasonably shorter time
scales [109]. The different forms of synaptic plasticity are believed to play a crucial
role in learning and in cognitive processes related to short- and long-term memory.

Short-term synaptic plasticity (STSP) refers to the phenomenon in which the
effective synaptic strength, viz. the synaptic efficacy is transiently affected by the
history of the presynaptic activity [109, 110]. Elevated presynaptic firing may have
two opposite effects on the signal transmission properties of synapses. Due to the
synaptic signaling, the influx of Ca2+ ions into the presynaptic axon terminal in-
creases the release probability of neurotransmitters, resulting in a short-term facil-
itation. On the other hand, this leads to depletion of neurotransmitters, as show by
Fig. 3.1, stored in the vesicles of the presynaptic bouton [111]. The two phenomena
have been observed in various cortical regions and for different animals, showing
a great diversity in properties and in the way they interact both in excitatory [112]
and inhibitory [113] synapses. The time scale of the STSP dynamics is an important
inherent property, determining whether short-term facilitation or depression is the
dominating behavior [114]. The induced modifications are temporary, lasting from
hundreds to thousands of milliseconds, hence, in a persistent absence of presynap-
tic activity, the synaptic efficacy returns to its baseline level. Therefore, the term
transient synaptic plasticity may better describe the actual phenomenon.

3.1.3 Rate-encoding neurons and the full-depletion model
For modeling purposes of neural dynamics, the firing, viz. the activity of a neuron
can typically be quantified in two ways [115]. When the precise timing of each
emitted spike is of relevance for the phenomena under investigation, i. e. when
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the important time scales are of the order of a few milliseconds, the generation of
individual spikes has to be modeled. These models of neurons we may term as
time-encoding neurons. In case of longer time scales, the neural activity can be
represented by the firing rate of the individual neurons, which corresponds to the
frequency of the emitted spikes. Rate-encoding neurons are generally imagined
as point neurons. Alternatively, one may compute the average firing frequency of
spiking neural populations and represent by the firing rate an ensemble activity .

As a simple model for rate-encoding point neurons we consider nonlinear firing-
rate response curves [105]. The activity of a neuron, represented by the normalized
(dimensionless) firing rate y ∈ [0, 1], is given here by a nonlinear transformation,

y = y(x) =
1

1 + ea(b−x)
, (3.1)

of the internal state x of the neuron, associated with the membrane potential x [116].
The function (3.1), also called as transfer or activation function, has a sigmodial
shape, characterized by two intrinsic parameters [105]. The threshold b determines
the transition point from low activity to high activity level, as illustrated by Fig. 3.2,
while the gain a is setting the slope of the function at x = b. The dynamics of
the membrane potential x is regulated by the incoming inputs from the other neu-
rons [116]:

ẋ = −Γx+
∑
i

ωiyi , (3.2)

where ωi is the synaptic strength connecting to neuron i. Excitatory and inhibitory
inputs can be modeled by positive ωi > 0, respectively negative ωi < 0 weights.
In the absence of input, with yi = 0, the membrane potential relaxes to zero on a
time scale defined by the leak-rate Γ. We note that other transfer functions, e. g.
y(x) = tanh(x), are also employed in the field [105, 117].

According to Dale’s principle, the outgoing synapses of neurons are either
excitatory or inhibitory [106]. In the computational modeling of neural networks
this constraint is often lifted, allowing for both type of connections. This can be
considered a simplification of cases, when there is a third neuron involved in the
signal transmission, mediating the type of the influence (e. g. the first neuron is
exciting an inhibitory neuron, which in turn then inhibits another one).

Similarly to the quantification of the neural activities, in the computational and
theoretical modeling of neural plasticity mechanisms two major approaches have
been developed, which are aligned along the rate-encoding, respectively the time-
encoding directions. The early time plasticity rules have been mostly proposed in
terms of firing rates, such as the famous Hebb’s rule [118], the Oja’s rule [119], or
the BCM rule [120]. The plasticity mechanisms which effectively depend on the
exact timing of individual spikes, such as spike-timing dependent plasticity, can
however only be described on the level of time-encoding rules [121, 122].
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Figure 3.2: Transfer function and the dynamics of the full-depletion model (3.3).
Left: The sigmoidal-shaped transfer function y(x), defined by Eq. (3.1), for a = 1
and different threshold values b. The low- and high-activity regions are color-coded
respectively with blue and red gradients for visualization purposes. Note that the
maximal activity is normalized to unity, y(x) ∈ [0, 1]. Right: The relaxational
dynamics of the calcium u and neurotransmitter concentration ϕ, together with the
effective synaptic weight factor uϕ, as a function of time as defined by the full-
depletion model (3.3) for Umax = 4, Tu = 300 ms and Tϕ = 600 ms. For high / low
presynaptic activity, with y = 1 (in the gray shaded interval) / y = 0 (otherwise)
respectively, the target levels are u → Umax / 1 for the calcium and ϕ → 0 / 1 for
the neurotransmitter concentration.

Hereinafter, we turn our attention to the modeling of short-term synaptic plas-
ticity with rate-encoding neurons, discussing a minimal set of differential equations
able to capture the essential dynamical behavior observed in experiments. The
first phenomenological model incorporating both effects of the increased release
probability of neurotransmitters and their depletion in time has been proposed
by Tsodyks and Markram [114, 123]. Recently, it has been employed in several
studies of neural network modeling, showing a wide range of complex phenom-
ena [124, 125].

The full-depletion model, a modified version of the original Tsodyks-Markram
rules for presynaptic plasticity, allows for the the complete exhaustion of neuro-
transmitters [51]. As discussed in Sec. 3.1.2 short-term synaptic plasticity is regu-
lated mainly by the dynamical interaction of three quantities: the amount of Ca2+

ions in the presynaptic terminal u, entering via the voltage-gated calcium channels
as a result of the elevated presynaptic activity y, and the fraction of available neuro-
transmitters ϕ to be released to the synaptic cleft. Here, the interaction of incoming
spikes, calcium flow and neurotransmitter release is formulated in terms of a relax-
ational dynamics:

u̇ =
U(y)− u

Tu
U(y) = 1 + (Umax − 1)y

ϕ̇ =
Φ(y, u)− ϕ

Tϕ
Φ(y, u) = 1− uy

Umax

(3.3)
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to the respective target functions U(y) and Φ(y, u), and characterized by the re-
spective time scales Tu and Tϕ.

Note that for prolonged high presynaptic activity, the target functions reduce to
U(1) = Umax and Φ(1, Umax) = 0, where Umax defines to the maximal Ca2+ level.
On the other hand, in case of low activity U(0) = 1 and Φ(1, 1) = 0, hence, the
model (3.3) allows for a direct control of the long term dynamics. Similarly to the
Tsodyks-Markram rules [125], the effective synaptic weight is determined by the
product of the two variables,

ωeff(t) = ω u(t)ϕ(t) . (3.4)

The dynamics of the model is shown in the left plot of Fig. 3.2, illustrating the
behavior for high and low activity time intervals, as discussed above. In the high
activity region the synaptic transmission is transiently facilitated, in terms of the
uϕ product reaching a factor of two increase, which is followed by the a depression
phenomena, with uϕ→ 0, corresponding to the full depletion of neurotransmitters.
Therefore, the model allows even the complete blocking of signal transmission
corresponding to an effective decoupling of neural interaction.

We note, however, that setting the Tu and Tϕ parameters in Eq. 3.3 according
to the experimentally determined [112, 113] parameters of the Tsodyks-Markram
model [114], we find a similar dynamical behavior albeit on a longer time scale.
Therefore, a biologically more realistic simulation may be realized by optimizing
the parameters for a better matching between the u(t)ϕ(t) curves generated by the
full-depletion model (see Fig. 3.2) and the ones corresponding to the experimental
measurements. Since we are interested in the generation of transient-state dynamics
by using STSP in a recurrent neural network, we do not aim for the exact reproduc-
tion of the experimental finding.

3.2 Transient-state dynamics generated by STSP
It has been proposed already that dynamic synapses may be used to extend attrac-
tor neural networks for representing time-dependent stimuli [126, 127]. Short-term
facilitation is believed to play an important role in working memory, since the
presynaptic calcium level provides a cheap memory buffer for up to thousands of
seconds [124]. Since there is evidence for short-term synaptic plasticity between
locomotor network interneurons, it is suspected to be an important functional com-
ponent of spinal cord networks [128], where synaptic depression may be involved
in the maintenance and modulation of motor programs [129]. In the context of ar-
tificial systems, STSP can generate complex behavior patterns, which may be used
as motions primitives [15, 130]. This latter aspect will be demonstrated in detail in
Chapter 4 by constructing autonomously active simulated robots.
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Figure 3.3: Sketches of the networks of N = 4/10/100 neurons (left / middle
/ right) illustrated with one active clique (black nodes connected by blue lines).
Shown are the connections (excitatory wjk and inhibitory zjk / only excitatory / only
of the active clique). Active / inactive nodes are depicted by filled / open circles, and
excitatory / inhibitory links by continuous / dashed lines. The numbers correspond
to the index of the respective nodes.

3.2.1 Attractor networks with clique encoding
Here, we consider attractor neural networks [131] characterized by multiple co-
existing attractor states, corresponding to active excitatory cliques of neurons.
We show that the presence of short-term synaptic plasticity can destabilize these
fixpoint attractors, generating transient-state dynamics in terms of emerging limit
cycles and chaotic attractors [51].

Clique encoding is based on the idea that fully connected excitatory subnet-
works can stabilize themselves via their mutual excitation [9]. To demonstrate
this, we consider recurrent networks with a complementary excitatory-inhibitory
graph topology, i. e. a fully connected network, where the bidirectional connections
between any two neurons j and i is either excitatory or inhibitory, denoted here as
wij > 0 and zij < 0 respectively. No self-connection is allowed wii = zii = 0.

Three examples of such network structures, respectively with N = 4/10/100
nodes, are presented in Fig. 3.3. The N = 4 neuron network consists of a ring of
excitatory connections with wi,i+1 = w, while the inhibitory ones are connecting
the second order neighbors with zi,i+2 = z (assuming periodic boundary conditions
for the indexes). Is is, hence, characterized by a C4 rotational symmetry.

The N = 10 and N = 100 site networks are constructed, on the other hand, by
creating an Erdős-Rényi random graph [1, 132] of excitatory links with connection
probability p = 0.3, adding the inhibitory links afterwards as complementary to get
a fully connected structure. The advantage of using clique encoding networks is the
high number of possible cliques. For Erdős-Rényi-type random graphs, the number
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of cliques consisting of K nodes is statistically given by [1](
N

K

)
pK(K−1)/2(1− pK)N−K , (3.5)

where the first term denotes the number ofK-combinations, and p is the probability
of any two nodes being connected. As a straight-forward application of Eq. (3.5),
we see that statistically there are about 2.6 cliques of size 3 for a N = 10 site
random network with p = 0.3. Note that the same calculation for N = 100 nodes
would yield almost 307 cliques. These simple examples also illustrate the high
number of all possible cliques for networks consisting of millions of neurons.

Considering rate-encoding neurons and employing Eqs. (3.2) and (3.1) for the
activity dynamics and the transfer function respectively, together with the network
structures presented above, we find that the systems are multistable (cf. Sec. 1.1.4;
for the similar Hopfield-networks see [92,131]). The stable fixpoint attractors of the
networks correspond to active neurons with yi ≈ 1, which form cliques in terms of
their excitatory connections. Examples of such active cliques are shown in Fig. 3.3.
Note that the formation of single active cliques is possible whenever the inhibitory
connections are stronger |zij| & 2wij . In this case the members of an active clique
are mutually exciting each other, while suppressing the activities of neurons to zero.
For more balanced excitatory-inhibitory connections with |zij| ≈ wij , the stable
fixpoints turn into co-activated clique states.

Short-term synaptic plasticity may be added now to the network by replacing the
previously static synaptic weights in Eq. (3.2) with the dynamic ones, as defined by
Eq. (3.4). To simplify the system, we assume that all neurons are characterized by
the same parameters, including the STSP ones. Generally, every synapse, connect-
ing neuron j to neuron i, is characterized by two presynaptic variables, uij and ϕij .
Note, however, that their dynamics, defined in Eq. (3.3), is only influenced by the
presynaptic activity yj = y(xj) (cf. Fig. 3.1). Therefore, as a result of the common
driving signal, all outgoing connections of neuron j get synchronized in the asymp-
totic limit, allowing for a simplified notation, uij → uj and ϕij → ϕj . To further
reduce the complexity of the problem, here, we keep the excitatory connections
static, hence the effective synaptic weights may be written as:

weff
ij (t) = wij , zeff

ij (t) = zij uj(t)ϕj(t) . (3.6)

The number of STSP variables scales linearly with the number of neurons, in
contrast to many other forms of synaptic plasticity, which are affected by both pre-
and postsynaptic activities.
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Hence, the full dynamical system governing the activity of N neurons with
STSP spans a n = 3N dimensional phase space:

ẋi = −Γxi +
N−1∑
j=0

(wijyj + zijujϕjyj) + I

u̇i =
U(yi)− ui

Tu

ϕ̇i =
Φ(yi, ui)− ϕi

Tϕ
,

(3.7)

where the target functions U(yi) and Φ(yi, ui) are defined as in Eq. (3.3). The
additional parameter, I , denoting a constant global input to the network, will be
used as a control parameter of the system.

The phase space of system (3.7) is infinite in the membrane potential vari-
ables xi. It is, however, sometimes more convenient to work with bounded spaces.
Hence, one may also define the system in terms of the firing rates yi, by rewriting
the membrane potential dynamics as ẏi. Note that despite the nonlinear activation
functions y(x) this results in an equivalent dynamical systems, preserving the
invariant sets, the attractors, as well as their stability. Therefore, we use the firing
rates yi and the membrane potentials xi interchangeably in the explanation of re-
sults. For a detailed proof and discussion of the effects of nonlinear transformations
in terms of stability and invariant quantities see Appendix A.

Due to the additional STSP variables, the original fixpoint attractors, corre-
sponding to active cliques of excitatory connections (as illustrated in Fig. 3.3), may
either be destabilized or completely destroyed. In case of a slow STSP dynamics,
with ϕ̇i � ẋi or u̇i � ẋi, the former attractors correspond, however, to slow-
manifolds (complex piece-wise smooth hypersurface segments) embedded to the
full n = 3N dimensional phase space [42]. The trajectory may, hence, approach
these metastable states, slowing down only temporarily in their neighborhood [9].
Since the dynamical system (3.7) is autonomous, with a negative phase space con-
traction rate, defined by Eq. (1.3),

σ = ∇ · f =
∑
i

(
∂ẋi
∂xi

+
∂u̇i
∂ui

+
∂ϕ̇i
∂ϕi

)
= −Γ− 1

Tu
− 1

Tϕ
< 0 , (3.8)

with f denoting the RHS of (3.7), the system is strictly dissipative. This is true
when self-connections are not allowed, wii = zii = 0, as for the clique encoding
networks considered here. Therefore, the long-term behavior of system (3.7) is
characterized by attractors (cf. Sec. 1.1.2).

In Fig. 3.4 we present two limit-cycle attractors for the case of the symmetric
N = 4 site network. We find that during these oscillations, 2-neuron cliques are re-
activated sequentially, corresponding either to a back-and-forth switching of active
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Figure 3.4: Transient-state dynamics in the N = 4 site symmetric network (see
the left graph of Fig. 3.3). Top: The activity yi of the neurons as function of time
showing two examples of limit cycle solutions: with switching (left) and with trav-
eling wave (right) dynamics. Bottom: The corresponding normalized speed q, see
Eq. (3.9), of the flow. The parameters are Γ = 10 s−1, a = 1, b = 0 for the neu-
rons, and w = 40 Hz, z = −100 Hz, Tu = 300 ms, Tϕ = 600 ms, Umax = 4 for the
synapses, 1with no input I = 0.

states, or to a traveling-wave-like propagation of an activity bump (similar to the
one found in [127]):

[2, 3]→ [0, 1]→ and [2, 1]→ [1, 0]→ [0, 3]→ [3, 2]→ ,

where we indicated in brackets the indexes of neurons forming the transiently active
cliques in the respective cycles.

The dynamics presented in Fig. 3.4 is characterized by plateaus of activities in
the time-series of firing-rates yi. The trajectory slows down in phase space, as it ap-
proaches these transient states. This slowing down can be quantified by calculating
the speed of the flow q,

q = Q/Qmax , Q = |f(v)|2 , v̇ = f(v) , (3.9)

where v = (x,u,ϕ) and f is denoting the RHS of Eq. (3.7), while Qmax is just a
normalization factor, corresponding to the maximal absolute speed Q on the attrac-
tor. The former clique attractors of the network act as metastable states, where the
normalized speed is approaching zero, q → 0 (see the bottom plot of Fig. 3.4). On
the other hand, q peaks sharply when switching from one transient state to another.

3.2.2 Bifurcation analysis of the symmetric network
The N = 4 site symmetric network is one of the smallest networks exhibiting
transient-state dynamics. Additionally, due to its symmetric network structure, it
also allows for a detailed bifurcation analysis. Combining analytical and computa-
tional methods we study the the existing attractors as a function of a constant global
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Figure 3.5: Symmetric solutions of Eq. (3.7) for the N = 4 site network, illustrated
in Fig. 3.3. Left: Graphical solution of the nonlinear fixpoint equation (3.10), show-
ing the left- and right-hand-side functions, l(x∗) (gray curve) and r(x∗) (color lines)
respectively, as defined by Eq. (3.11), for three different values of the input I . Note
that l(x∗) is a linear function of I . The other parameters are as for Fig. 3.4. Right:
The fixpoint solutions x∗ corresponding to the intersection points of the curves plot-
ted on the left, as a function of the input strength I . For I ∈ [−27 Hz, 54 Hz] three
coexisting solutions are possible.

input, denoted by I in Eq. (3.7).

As the network is characterized by a C4 symmetry, first we look for the cor-
responding symmetric solution, i. e. xi(t) = x∗, ui(t) = u∗ and ϕi(t) = ϕ∗ for
all i ∈ {1, 2, 3, 4}. Fixpoint solutions of this type must fulfill the following set of
nonlinear equations (cf. Eq. (3.7)):

Γx∗ − I = (2w + zu∗ϕ∗) y∗

u∗ = 1 + (Umax − 1)y∗

ϕ∗ = 1− u∗y∗/Umax .

(3.10)

where y(x∗) = y∗. Note that the second and third expressions can be plugged into
the first one, reducing the problem to one nonlinear equation. Denoting by l(x∗)
and r(x∗) respectively the left- and right-hand-side functions of the first equation,

l(x∗) = Γx∗ − I , r(x∗) = (2w + zu∗ϕ∗) y∗ , (3.11)

one may solve the problem graphically, looking for their intersection points, as
illustrated by the left plot of Fig. 3.5. For low and high values of the control param-
eter I one finds a single fixpoint, while for intermediate input strengths, including
I = 0, three fixpoint solutions are possible (see the right diagram of Fig. 3.5).

The solution illustrated in Fig. 3.5 already hints to some possible saddle-node
bifurcations at the bending points of the S-shaped curve. On the other hand, as
demonstrated by Fig. 3.4 for I = 0 there are two further limit-cycle attractors in the
phases space. To examine the stability of the fixpoints and investigate other possible
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solutions and bifurcations of Eq. (3.7), we use numerical continuation methods [54].

The full bifurcation diagram of the N = 4 site network as a function of varying
input current I is presented in Fig. 3.6. The skeleton of the fixpoint curve is given
by the symmetric solution of Eq. (3.10), as shown in Fig. 3.5. The lower / upper
segments of this S-shaped curve are stable fixpoints, corresponding to states when
all the neurons are active / inactive, with y(x∗ > 2) ≈ 1 and y(x∗ < −2) ≈ 0 (cf.
Fig. 3.2), also called as up- and down-states. For intermediate input strengths I
the symmetric solution breaks up into two branches via a Pitchfork bifurcation,
corresponding to the active-clique states discussed previously. Note that the C4

symmetry allows for four such cliques, with the active neurons being [0, 1], [1, 2],
[2, 3] and [3, 0] respectively. In the x0(I) projection, used for Fig. 3.6, the [0, 1] and
[3, 0] cases correspond to the upper, while the [1, 2] and [2, 3] states to the lower
fixpoint branches.

The active-clique states lose their stability at I ≈ −7.7 Hz in a pair of super-
critical Hopf-bifurcations, generating two small-amplitude limit cycles. That is
followed by a series of limit-cycle bifurcations, involving homoclinic and saddle-
node bifurcations of cycles, leading finally to the large-amplitude transient-state
dynamics presented in Fig. 3.4. To understand this parameter region of small
amplitude oscillations one may consider the 2-dimensional prototype system to-
gether with the double-well potential function, introduced in Chapter 2, which was
designed to exhibit an analogous cascade of limit-cycle bifurcations (see Sec. 2.3.1
and compare the bottom-right diagram of Fig. 2.4). Since the here considered
system is n = 12 dimensional, we find an intermediate region of chaotic behavior
as well (cf. Fig. C.1 in Appendix C).

The transient-state dynamics shown in Fig. 3.4 is realized in the form of stable
limit cycles, while the fixpoints, corresponding to the stable-clique states in the ab-
sence of STSP, turn into saddle-focus-type equilibria (see the dashed lines in the
right diagram of Fig. 3.6). These are, however, embedded in a slow manifold, com-
posed of the fixpoints of the ẋi subsystem, in the limit of infinitely slow u̇i or ϕ̇i dy-
namics [42]. Therefore, the trajectory may approach the attracting parts of the slow
manifold, never reaching them due to the finite Tu and Tϕ time scales. In this sense
the here presented approach is different from the ones based on the construction
of heteroclinic channels [45], as discussed in Sec. 1.1.5. Furthermore, the saddle-
focus points also disappear for I > 60 Hz, providing an example of transient-state
dynamics without saddles.
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Figure 3.6: Bifurcation diagram of the N = 4 site network, showing the x0 com-
ponent of the solutions, as a function of the input strength I . Left: The fixpoint
and limit-cycle solutions, as well as the bifurcations for the full interval range, also
shown in Fig. 3.5. Right: A zoom-in to the parameter region with Hopf-bifurcations.
The solid (dashed) black curves denote stable (unstable) fixpoints, solid (dashed)
red/green lines correspond to the maximal/minimal amplitudes of stable (unstable)
limit cycles. The filled color circles and squares indicate bifurcation points: PF -
Pitchfork, SN - saddle-node, H - supercritical Hopf, HO - homoclinic, and SNC
- saddle-node bifurcation of limit cycles. The two green shaded intervals denote
the stability regions of the switching (I.) and of the traveling wave (II.) limit cycles
solutions. The arrow points to a parameter window with chaotic dynamics (see
Appendix C). The stable segments of the S-shaped symmetric solution curve, de-
noted as “up-state” and “down state”, correspond to fully active and fully inactive
networks (cf. Fig. 3.5). The parameters are the same as for Fig. 3.4.

3.2.3 Complex activity patterns in random networks
To enable the investigation of the emergence of transient-state dynamics as we add
STSP to the network, we also implement a simple binary parameter ν ∈ {0, 1} in
the target functions for the calcium and neurotransmitter levels (cf. Eq. (3.3)):

U(y) = 1 + (Umax − 1)yν

Φ(y, u) = 1− uy

Umax
ν ,

(3.12)

which allows for the switching off of STSP, with ν = 0, even in the presence of
presynaptic activity yi > 0. In larger size random networks we demonstrate that the
previously presented transient-state dynamics is not an artifact of the symmetrical
network topology, but it is a generic behavior emerging when STSP is added to
attractor network models.

The network structures discussed so far have been characterized by symmet-
ric weight matrices, ωij = ωji, with ω = w, z, both for excitatory and in-
hibitory synapses. To demonstrate that the presented results apply to non-symmetric
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Figure 3.7: Time-series of firing rates yi of the N = 10 site random network,
showing two coexisting limit-cycle solutions. STSP is turned off, by setting ν = 0
for the synaptic target functions (3.12), in the first 5 seconds, as indicated by the
respective gray-shaded areas. Left / right: The initially activated cliques consist
of neurons [4, 7] / [1, 5, 7], respectively. The parameters are a = 0.4, b = 0, Γ =
10 s−1, I = 0, w = 80 Hz, z = −200 Hz, σw = σz = 10 Hz, together with Tu =
21 ms, Tϕ = 706 ms, and Umax = 4.

ωij 6= ωji couplings as well, we add a static perturbation to the synaptic strengths:

ωij = ω0
ij + ηωij , ω0

ij =

{
ω, if i and j are connected
0, otherwise

(3.13)

where ω = w, z denotes the average value of the excitatory, respectively of the
inhibitory weights , while the ηωij static perturbations correspond to normally dis-
tributed random variables centered around zero with standard deviations σω. Hence,
we keep with (3.13) the complementary structure of excitatory and inhibitory con-
nections, while the exact synaptic efficacy of the synapses will, however, differ for
every pair of neurons.

Finally, we now consider the N = 10 and 100 site random networks depicted
in Fig. 3.3, and solve the system (3.7) together with the new STSP target func-
tions (3.12) and the perturbed synaptic weights (3.13). Furthermore, here we use
experimentally determined STSP time-scale parameters, setting Tu = 21 ms and
Tϕ = 706 ms, according to the in-vitro measurements of inhibitory (GABAergic)
interneurons in neocortical slices of rats somatosensory cortex [113].

Starting with the N = 10 neuron network, in Fig. 3.7 we present two coexist-
ing limit-cycle attractors. The generated transient-state sequences are indicated by
plateaus of high-activity states (with yi > 0.8), corresponding to cliques of active
neurons:

[4, 7]→ [1, 5, 7]→ [1, 5, 9]→ [5, 8, 9]→ [6, 8]→ [3, 6]→ [3, 4]→ ,

on the left, and

[1, 5, 7]→ [1, 5, 9]→ [5, 8, 9]→ [1, 5, 9]→ [1, 5, 7]→ ,
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Figure 3.8: The activity of the N = 100 site random network, showing the number
of active neurons An with yi > 0.8 (red curve), respectively of the active cliques
Ac (black curve). STSP is turned off, ν = 0 for the first 20 seconds, corresponding
to the grey-shaded interval. Left: Strong inhibition, w/|z| = 1/5, allows for a
single activated clique of 4-6 neurons at all times. For the here selected initial state
An = 5 and Ac = 1, where the active neurons are [34, 53, 86, 92, 99], cf. Fig. 3.3.
Right: The excitatory-inhibitory balance w/|z| = 1, leads to a chaotic fluctuation
of co-activated cliques, with An = 16 and Ac = 41 when STSP is turned off. Other
parameters are I = 0, a = 0.4, b = 0, Γ = 10 s−1, w = 100 Hz, σw = σz = 10 Hz,
Tu = 21 ms, Tϕ = 706 ms, Umax = 4.

on the right, respectively. Despite the perturbed weight matrices (3.13), for
switched-off STSP with ν = 0, the attractors of the system remain to be the
activated cliques of excitatory connections, as indicated by the gray-shaded time
intervals in Fig. 3.7. The time-series of patterns, generated by transient-state
dynamics with STSP, when ν = 1, may be selected via the initially activated
clique-states, i. e. on the initial conditions in the n = 3N dimensional phase space,
separated into different attraction-domains of the respective limit cycles. Which
particular cliques belong to such a limit cycle depends, however, on the specific
synaptic weight configurations (3.13).

Limit cycles are not the only possible realizations of transient-state dynamics.
In Appendix C we show an example of chaotic oscillations in the symmetric 4-site
network. One may expect that chaotic behavior also appears when the network
structure is perturbed, especially in the limit of large random networks. In Fig. 3.8
we see examples of chaotic-like sequential switching in terms of the number of
activated cliques. As we emphasized in Sec. 3.2.1, when inhibition is significantly
stronger than excitation, information items may be encoded by single active cliques
of neurons (see the left plot of Fig. 3.8). The generated sequence of patterns cor-
responds then to the chaotic switching between the high number of possible states,
cf. Eq. (3.5).

In case of a more balanced competition of excitatory vs. inhibitory inputs, the
co-activation of several cliques is possible (see the gray-shaded interval in the right
plot of Fig. 3.8 with Ac = 41 active cliques), allowing for a highly unpredictable
fluctuation, not only in terms of the active cliques, but also in the total number
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of firing neurons. Whether this behavior is the result of a strange attractor, or of
long-lasting transients still remains to be checked. That is only possible by running
simulations encompassing longer and longer total time intervals. Furthermore, one
may also employ tests for chaos [29] to rule out the existence of exceedingly long
periodic windows, which may not be detectable in the time-series of activities. We
have checked that the presented behavior persist even after 1000 seconds of total
simulation time, a time scale which is larger then many cognitive processes. On the
other hand, even transient chaos may easily turn into a permanent one when noise
is added to a system [133, 134]. Therefore, looking for the strange attractor in a
300-dimensional system may not be relevant when chaotic behavior persists for a
long time, even without external noise.

3.3 Discussion
In this chapter we have presented a simple neural network model for generating
transient-state dynamics. Following the idea of adding local slow variables to
attractor networks [9], we have argued that short-term synaptic plasticity (STSP)
provides natural candidates for these auxiliary variables [51]. Considering networks
of different sizes we have demonstrated that STSP may transform stable fixpoints of
multistable systems into attractor ruins, leading to the emergence of transient-state
dynamics, characterized by a sequential switching between well-defined states of
the system.

We have shown that the observed transient-state dynamics is stable in the sense
that it corresponds to limit cycle and chaotic oscillations. The phase space of the
system is contracting, the presence of small noise would, hence, only affect the
duration and the order of appearance of these metastable states. The presented
model is also not sensitive to small variations of parameters, nor to the particular
wiring of the networks. We examined the effect of a constant global input to the
topology of the phase space, and we have shown that only strong input can push
the system close to bifurcation points, and that this global input may be used to
suppress the state switching behavior, and force it back to the original attractor
states of the network.

The proposed mechanism for generating transient-state dynamics does not rely
on the construction of heteroclinic channels, which are not stable structurally and
only occur, hence, for systems of a special form [3]. Therefore, we believe that
the here presented principle may be more relevant for modeling biological neu-
ral networks, which are generally characterized by several different time scales.
Finally, the example of the investigated symmetric network suggests that these
two, seemingly very different approaches (slow variables vs. heteroclinic channels)
might lead to systems with similar features, especially in the limit when special
symmetries are present in the system. New concepts and methods need to be
developed by investigating further slow-fast dynamical systems to gain a deeper
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understanding of the underlying dynamical mechanisms [42, 53]

For demonstrating that STSP may play an important role in the generating
spatio-temporal patterns involved in many cognitive processing phenomena, we
considered clique encoding neural networks, where excitatory and inhibitory con-
nections form complementary structures. This topology allows for an exceedingly
high number of possible states, corresponding to active cliques of excitatory con-
nections, being biologically also plausible. There are experimental evidences for
transiently active assemblies of strongly connected excitatory neurons, called cell
assemblies, which underlie several cognitive operations in the brain via creating
specific hierarchical organizations, regarded as the neural syntax. Furthermore,
their dynamically changing (due to STSP for example) constellations of synaptic
weights, denoted as “synapsembles” are thought to be involved in the modulation
and linking of the constituents of the neural syntax (for review of cell assem-
blies and synapsembles see [135]). As specific applications of sequential pattern
generation via short-term synaptic plasticity, we discuss here two model systems,
there are, however, a big deal of other possible phenomena where STSP may be
involved [136].

The role of short-term synaptic plasticity has been investigated in the context
working-memory (WM) models as well [137]. In working-memory tasks, infor-
mation has to be stored for several seconds for further processing purposes [138].
It has been shown, that STSP is able to explain the irregular persistent activity
measured in the prefrontal cortex during WM tasks [124, 136, 139]. Using STSP,
the question of the capacity of working-memory, in terms of stored memory items
has also been addressed [140]. Nevertheless, other neurocomputational models of
working memory also exist [141].

Centrally generated rhythms can serve many functions in biological systems,
including movement generation for locomotion, breathing and swallowing. Central
patterns generators (CPG) are small biological neural networks that produce rhyth-
mic patterns are a result of simple signals, without requiring continuous sensory
information [142]. The here presented small neural networks may, hence, also be
interpreted in terms of central pattern generators, since they are stable even in the
absence of external input, and the duration of states is comparable to the length
of movement segments needed for locomotion [129]. In Chapter 4 we provide a
proof of this concept, by implementing simple neural controllers, modulated by
short-term plasticity, to generate motions primitives for simulated robots.
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Chapter 4

Robots as complex dynamical
systems

Sándor, B., Jahn, T., Martin, L., & Gros, C. (2015). The Sensorimotor Loop as
a Dynamical System: How Regular Motion Primitives May Emerge from Self-
Organized Limit Cycles. Frontiers in Robotics and AI, 2, 31.

Martin, L., Sándor, B., & Gros, C. (2016). Closed-loop robots driven by short-
term synaptic plasticity: Emergent explorative vs. limit-cycle locomotion. Frontiers
in Neurorobotics, 10, 12.

A field strongly related to computational neuroscience and to brain research,
in general, is artificial intelligence. The areas like cognitive artificial systems and
autonomous robots aim to synthesize the results and methods of neuroscience,
cognitive sciences and complex systems to develop new paradigms for creating
autonomously operating artificial systems and robots. In this spirit, we extend here
the application areas and concepts of dynamical systems theory to the study of
robotic locomotion, also linking together the results of the previous chapters.

We start by introducing the field of locomotion robophysics [11], and contrast-
ing it to traditional approaches of robotics. Investigating the behavior of simple
cylindrical and spherical shaped rolling robots within the LPZRobots simulation
environment [12] we show that even a minimal control mechanism can lead to gen-
eration of complex motion patterns. The “nervous system” of the robots consist
of a single, respectively three proprioceptual neurons, measuring the actual posi-
tions of the actuators. The activity of the neurons is further modulated by internal,
and respectively short-term synaptic plasticity mechanisms, similarly to the neural
networks presented in Chapter 3. The resulting behavior primitives correspond to
limit-cycle and chaotic attractors in the overarching phase space of internal and ex-
ternal variables. We find that the interactions with other robots or obstacles may
lead to a switching between coexisting attractors, a striking consequence of the
multistability discussed in Chapter 2.

71



72 4. Robots as complex dynamical systems

4.1 Introduction to locomotion robophysics
General robotic locomotion is considered to be a particularly difficult task, since
it aims to endow robots with the ability to navigate and transport themselves au-
tonomously from place to place in complex environments. For this, robots need to
interact with the external world via their own body and incorporate the feedback in
a closed-loop control scheme [11].

Traditional approaches to locomotion robotics focus on defining specific tasks,
and then optimizing the performance of robots for successful and fast task comple-
tion. This can be achieved either via classical control theory [143], using open-loop
control, e. g. with central pattern generators [142], or by considering closed-loop
schemes with feedback [144]. Withing this scheme, machine learning techniques,
like deep learning algorithms [145, 146], have been successful in controlling de-
vices to locomote on relatively complex terrains [147, 148]. These approaches are
lacking, however, the understanding of the dynamics of the robot when interacting
with the surrounding environment. Hence, one can not expect the robots to always
perform well, when being exposed to locomote autonomously in a diversity of envi-
ronments, without understanding the dynamical system consisting of the controller,
body and environment [11].

Locomotion robophysics aims to provide a general framework for the systematic
study of simplified robotic architectures in controlled environments, to formulate
and test new theoretical models for autonomous locomotion [11]. Its goal is, hence,
not necessarily the optimization of procedures for successful task completion,
but rather the understanding of the principles governing the interactions with the
environment. The broad exploration of parameter space for simplified devices with
a minimal geometric and control design can also lead to a deeper understanding of
the mechanisms needed for optimal performance. Furthermore, the experimental
investigation of the principles of locomotion in a diversity of possible environments,
e. g. the self-propulsion in highly dissipative media [149], can help in testing and
refining the theoretical predictions.

There is a growing agreement in the field of robotics that ideas originated from
biology and physics in general, or more specifically from fields at their intersection,
complex systems and self-organization, can strongly benefit the design and con-
struction of autonomous robots. In this context, it has been argued that the behavior
of an agent is not simply the outcome of an internal, top-down-type control, but
rather the result of self-organization and emergence in complex dynamical sys-
tems [19]. The behavior of robots should be seen as the dynamical and reciprocal
coupling of brain, body and environment.

Embodiment: the possible motions of agents are shaped, constrained and also
defined by their very own body and the way that interacts with the environment [13].
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This information may be used then to distribute the control and processing not only
among the parts of its “brain”, but also to its musculoskeletal system. The embodied
perspective provides an alternative approach for tackling the challenges raised by
the wide variety of complex environments. This idea is employed in the field of
soft computing and morphological computation, which rely on the contribution of
the body to cognition and control of artificial and natural agents [150]. In this view,
robots should exploit the material properties of their body, reducing with that the
need for computation (e. g. using elastic materials might be beneficial above stiff
materials, since the latter one requires more complex control to avoid more risky
collisions) [151], a phenomena also referred to as compliance.

Several complementary principles have been proposed for designing control
mechanisms which allow or even generate embodiment. On one side one may
rely on self-organized behavior generation [80] guided by information theoretical
objective functions [152], such as predictive information [89], surprise minimiza-
tion [88], or homeokinesis [12]. In these cases, higher order principles may be
postulated in terms of generating functionals [86], which are then used to derive
learning and adaptation rules for the artificial neural networks controlling the robot.
On the other side, embodied agents may also be created via evolutionary robotics,
where optimized neural controllers are selected via evolutionary processes [153].

As a bottom-up approach, similarly to the case of dynamical modeling of neural
networks discussed in Sec. 3.1, complex dynamics may also be generated via
employing phenomenological models of biological neural processes. In the frame-
work of bio-inspired robotics [19], short-term synaptic plasticity (STSP) has been
proposed to be used for sculpting rhythmic motor patterns [128]. In Chapter 3
we have introduced the main bio-physical processes contributing to the transient
modification of synaptic efficacy, arguing also that STSP proves to be involved in
several motor control related processes, such as the selection of motor patterns and
their modulation [129]. Short-term plasticity mechanisms similar to STSP have
already been investigated in the context of robotic locomotion as well, indicating
that even very simple neural networks may allow for a build-up of stable gaits [130].

Along these lines, we further reduce the complexity of the neural controllers,
considering first a single neuron with internal adaption [14], which is then followed
by a three-neuron network, modulated by short-term synaptic plasticity rules [15].
Implementing these controllers in simple rolling robots, we investigate the resulting
dynamical behaviors in terms of the emerging attractors in the full space of the
“brain”, body and environment.

The earliest dynamical systems type of approaches to robotic locomotion have
already a twenty years long history. Among those one has to mention the pioneer-
ing work of Randall Beer as first step towards developing a consistent dynamical
systems theory as a general theoretical framework for the synthesis and analysis
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of agent-environment interactions [82]. This view has been since pushed forward
by several people. Nonlinear dynamical systems have been considered for goal-
directed movement generation, by learning trajectories [154] via computing with
fixpoints [155] and with continuous attractors [41]. Alternatively, one may design
dynamical systems which allow for self-exploration, viz. a self-organized behavior
for autonomous robot development [156].

It has been shown that efficient locomotion can also be achieved by embedding
the control and learning mechanisms in a single dynamical system, rather than
keeping the traditional separation between controller and learning algorithm [157].
Considering, hence, the full sensorimotor loop as an overarching dynamical sys-
tem [158] the embodiment and situatedness of agents, may be studied in terms of
the emerging stable attractors in the phase space of the internal neural circuitry,
body and environment [159]. While these works are pointing in the right direction
consider only relatively complex controllers (see [160, 161] for some more recent
examples), we believe, hence, that the investigation of even more simplified robots,
behaving in some minimal environment, may unveil further aspects and features of
the underlying dynamical principles.

In the next sections we follow this idea for pushing forward the dynamical
systems view in locomotion robophysics. We propose that embodiment may be
defined in terms of the topological differences between the attractors generated only
by the controller, viz. when being detached from the body, and the self-organized
attractors in the overarching phase space of the full sensorimotor loop. We present a
novel interpretation of the robot-environment interactions in terms of switching be-
tween attractors and attractor ruins. Hence, we believe that our dynamical systems
approach to robophysics can provide an intellectual complement to the engineering
and computer science type approaches of traditional robotics.

To investigate the dynamics generated by the here considered simple neural
controllers, we use the LPZRobots simulator software package [12]. The library
comes with a realistic physics simulator in which the user defines the environment,
the obstacles, the agents and so on. The physical simulation steps are performed
iteratively using the Open Dynamics Engine kernel [162], while the graphical vi-
sualization is created by the Open Scene Graph [163]. The physics simulation is
based on the rigid body dynamics of objects, which may be connected by different
joints, constraining the relative motion of the connected objects. All objects follow
the principles of Newtonian mechanics with gravitation, different types of inertial
forces, static and kinetic friction, drag, and so on. At collisions the interactions
are modeled as a superposition of elasticity, friction and slipping. The equations of
motion are integrated iteratively using a semi-implicit (first order) Euler method.
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Figure 4.1: Snapshot of the barrel robot placed on a flat ground in the LPZRobots
physics simulation environment [12]. The red ball is moved along the rod by an
actuator, which in turn is controlled by a single neuron (see Fig. 4.2). The movement
of the ball leads to a rolling dynamics, as a result of the gravitational and inertial
forces.

4.2 The sensorimotor loop as a dynamical system
In the previous section we argued for the need of detailed studies of minimal
robots and simple environments. Here, considering a cylinder-shaped barrel robot,
controlled by a single propriceptual neuron, we investigate the full sensorimotor
loop as an overarching dynamical system composed of the “brain”, body and en-
vironment [14]. For designing the controller, we use a simple theoretical neuron
model, presented in Chapter 3, while for the interpretation of results we rely on
the concepts introduced in Chapter 1.

The perfect cylinder-shaped architecture, as shown in Fig. 4.1, allows for a
rather constrained dynamics. When placing the robot on a flat horizontal surface
the dynamics is mainly confined to a straight rolling in the initially specified direc-
tion. Since the environment and the full dynamics is invariant under translations,
i. e. we would get the same dynamics in every point of the physical space, the two-
dimensional physical plane can be reduced to a single axis. We note that the robot
is also able to jump in the vertical-direction, we minimize, however, this effect as
much as possible by suitably chosen parameters.

4.2.1 One-neuron controller with internal adaption
The locomotion of the robot is generated indirectly, by moving an internal weight on
a rod fixed along the diameter of the cylinder-shaped body. The “brain” of the robot,
controlling this dynamics, consists of a single rate-encoding neuron characterized
by a sigmoidal transfer function y(x) (see Sec. 3.1.2):

y(x, b) =
1

1 + ea(b−x)
, ḃ = εa(2y − 1) , (4.1)

with a slowly adapting threshold b(t), on a time scale defined by the adaption rate ε.
The gain a is fixed. To simplify the system, we first consider the case of instanta-
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Figure 4.2: Sketch of the barrel robot (cf. Fig. 4.1) together with the one-neuron
controller. Left: The controller of the robot with the damped spring actuator. The
“brain” of the robot, a proprioceptual neuron (triangle) with internal adaption
dynamics (4.1), receives as input the actual position x(a) ∈ [−R,R] of the ball
(red filled circle). The output firing rate y(x, b) of the instantaneous neuron with
membrane potential x = x(a) determines the target position x(t) for the weight of
massm, defined by Eq. (4.2). The actuator then moves the ball along the rod (brown
axis), with the force determined by a PID controller (4.3), simulating the dynamics
of a damped spring (4.4), with constant k and damping γ. Right: The rolling robot,
composed of a barrel of radius R and mass M (black circle), with the one-rod
controller forming an angle φ with the horizontal (dashed line). The locomotion is
dissipative due to the rolling friction, which is proportional to the velocity of the
barrel vb = Rω = Rφ̇ (without slipping) via friction constant Ψ.

neous neurons, which may be seen as the limit of an infinitely fast neural dynamics
in Eq. (3.2), where the membrane potential x is following instantaneously the
incoming inputs, i. e. ẋ → 0. The internal adaption ḃ in Eq. (4.1) is regulating the
firing rate y of the neuron, by increasing (decreasing) the threshold b for high (low)
activities (cf. Fig. 3.2). Thus, for any constant input x(t) = x, the threshold dy-
namics ḃ would lead to a stable equilibrium by b → x and y → 1/2. We note that
the process of internal adaption (4.1) may also be motivated by information the-
oretical considerations, optimizing the distribution of the output firing rates [77,81].

For controlling the dynamics of the robot, the neuron receives a single sensory
input reflecting the state of its own body, namely the actual position x(a) of the ball
along the rod (see Fig. 4.2). Transferring this input through the activation func-
tion y(x) of the neuron, the a new target position generated for the ball is defined
as:

x(t) = 2R

(
y(x, b)− 1

2

)
, (4.2)

where x = x(a), due to the instantaneous internal dynamics of the membrane
potential, and R denotes the radius of the barrel. Note that x(t) = ±R for y = 1/0,
respectively.

The actuator moving the ball of mass m is implemented as a PID controller,
provided by the LPZRobots simulation environment [12]. The estimated force
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F = mẍ(a) needed for shifting the ball from its actual position x(a) to the new
target position x(t) is, hence, given by the sum of three terms (proportional, integral
and derivative terms):

F = gP (x(t) − x(a)) + gI

∫ t

0

(x(t) − x(a))dt+ gD
d(x(t) − x(a))

dt
, (4.3)

with the respective gP , gI and gD weighting coefficients. By setting gI = 0 in
our simulations, the system consisting of the moving ball controlled by Eq. (4.3),
reduces to a (driven) damped spring-block equation (cf. Fig. 4.2):

mẍ(a) = −k(x(a) − x(t))− γd(x(a) − x(t))

dt
+ Fin , (4.4)

with k = gP and γ = gD. The Fin term denotes the forces resulting from the inter-
action with the environment. When considering the moving robot, the gravitational
pull and the inertial forces are included in Fin. On the other hand, for Fin = 0, the
system (4.4) describes the dynamics of the ball of mass m in isolation from the
body and the physical environment.

Due to the velocity dependent friction with γ > 0 the damped-spring system
(4.4) is dissipative. The energy supply is provided by the internal adaption (4.1),
which may hence be considered the “engine” of the robot. With a fixed threshold
b(t) = b, the ball is always pushed to one of ends of the rod, x(a) → x(t) = ±R,
since y(x = R) ≈ 1 and y(x = −R) ≈ 0. The adaption (4.1) generates, however,
an internal stress, always trying to keep the activity around y = 1/2. Hence, by
adjusting the target position x(t) continuously, it provides the energy dissipated by
the physical motions.

By fixing the body of the robot, we investigate first the system composed of
the one-neuron controller (4.1) and the actuator (4.4). Since the robot can not roll,
the angle between the rod and the horizontal direction is constant φ = φ0. The
combined dynamical system is hence three-dimensional:

ẋ = v

v̇ = −Ω2(x− x(t))− β(v − ẋ(t))− g sin(φ0)

ḃ = 2 ε a(y − 1/2)

(4.5)

where Ω2 = k/m, β = γ/m and x = x(a), while the time derivative of the target
position depends on the internal adaption:

ẋ(t) = 2Ra y(1− y)(v − ḃ) . (4.6)

The term−g sin(φ0), corresponding to the tangential component of the gravitational
acceleration g, can be transformed away by a simple coordinate shift:

x→ x− g/Ω2 sinφo , b→ b− g/Ω2 sinφo , (4.7)
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resulting in a topologically equivalent system. It is easy to see that, in the absence
of the gravitational term, the system has a trivial fixpoint at (x∗, v∗, b∗) = (0, 0, 0).
The corresponding stability region of the fixpoint can be determined (cf. Sec. 1.1.3)
by computing numerically the eigenvalues of the Jacobian of system (4.5). We find
that, for a critically damped spring with β = 2Ω, and together with the Ω2 = 200,
R = 1 and p = 1 parameters, the fixpoint is stable for a . 1.78 when ε = 1,
termed as the off mode of the barrel. This state is destabilized at the supercritical
Hopf bifurcation curve indicated in the (ε, a) phase diagram of Fig. 4.3. Hence, for
larger gain a the the system exhibits stable limit-cycle oscillations (similarly to a
self-coupled neuron with intrinsic adaption [76,164]), referred to as the on mode of
the engine.

4.2.2 Embodiment as self-organized motion
In Sec. 4.1 we argued that, in complex environments, embodied agents may be more
effective than robots, for which the feedback of the environment is not incorporated
in the movement generation procedure. Here, we demonstrate that the feedback
resulting from the body-environment interaction is essential for the dynamics of
our (one-neuron controlled) barrel robot, since there would be no motion if the
sensorimotor loop was interrupted.

We consider now robots with radius R = 1 and mass M = 1 in the LPZRobots
physics simulator, keeping the parameters of the controller and actuator the same
as for Eq. (4.5). We place the robots in a simple environment, consisting of a flat
ground surface, as shown in Fig. 4.1. Due to the static friction the barrel is rolling
without slippage, with a translational velocity vb = Rω, determined by the angular
velocity ω = φ̇, compare Fig. 4.2. The rolling drag ∝ Ψvb is characterized by
the rolling friction coefficient Ψ = 0.3. The gravitational acceleration is set to
g = 9.81. In the simulations a step size of 0.001 is used which generates robust
results for the selected parameter sets. For the sake of simplicity, we present here
the parameters and variables in dimensionless units, with SI units being implied. A
complete list of parameter values, together with the corresponding units is however
given in Appendix D.

We have seen that the controller-actuator system (4.5) is characterized by two
stable states corresponding to the on and off modes of the engine. Considering now
the barrel robot without restricting its motion, one may expect, hence, no rolling
behavior in the off mode of the engine, since the (x∗, v∗, b∗) = (0, 0, 0) state is also
a stable fixpoint of the full system. The numerical simulations performed in the
LPZRobots environment yield, however, surprising results. While, the off mode
corresponds indeed to a non-rolling stable fixpoint of the barrel robot, we find that
rolling behavior may additionally be achieved for a wide parameter domain. Fur-
thermore, partially coexisting rolling modes, together with the on mode oscillations
of the engine have also been found. In Fig. 4.3 we indicate the experimentally
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Figure 4.3: Phase diagram of the barrel robot, as a function of the gain a and adap-
tion rate ε. The red, gray and black dots enclosing the dotted, single- and cross-
hatched regions respectively, are obtained via the LPZRobots simulation package.
The red solid line separating the on and off modes, follows from the stability anal-
ysis of one-neuron controlled actuator system (4.5), for a fixed but otherwise arbi-
trary angle φ = φ0. The dashed vertical and horizontal lines indicate the respective
cuts at ε = 0.25 and a = 1.9 used for the bifurcation diagrams shown in Fig. 4.5.
Non-rolling mode: The red dots indicate the Hopf-bifurcation curve, where a stable
limit cycle is generated, denoted here as on mode, corresponding to the oscilla-
tion of the ball along the vertically settled rod, without a rolling motion of barrel.
Outside the red dotted region, the system (4.5) has a single stable fixpoint, hence
the “engine”, see Eq. (4.1), may only operate in a self-organized manner when the
barrel is already moving.
Rolling modes: The hatched regions enclosed by the solid gray / black lines mark
the parameter domain allowing for nr = 1 / nr = 2 self-organized limit cycles
respectively, where the barrel is rolling with a finite average velocity 〈vb〉. For the
dynamics of the rolling modes see Fig. 4.4. In this dynamical systems approach,
the rolling behavior found in the off mode of the engine may be seen as a sig-
nature of embodiment. The stationary and the drifting back-and-forth modes (see
Fig. 4.6) are not shown to avoid overcrowding. The parameters Ω2 = k/m = 200,
β = γ/m = 2Ω, for the actuator, R = 1, M = m = 1 for the barrel, and g = 9.81,
Ψ = 0.3 for the environment have been kept constant.

found stability regions and the number of rolling modes in the (ε, a) phase diagram.
Furthermore, examples of corresponding time series and phase-plane plots are
shown in Fig. 4.4.

The on mode of the engine coincides with the 0:1 mode of the barrel robot,
where no rolling is resulting from the oscillation of the ball (cf. left column of
Fig. 4.4) along the vertically settled rod. This is possible due to the velocity de-
pendent rolling friction force of the barrel, vb = Rφ̇. As discussed in the previous
section, the gravitational term, in this case with φ0 = π/2, does not effect the
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stability region of the limit cycle, hence the numerically computed Hopf curve
and the measurement points from the simulation overlap (see the red dots and red
line in Fig. 4.3). The vertical position of the rod is, however, reflected by the
non-symmetric x(t) oscillations in Fig. 4.4. The limit cycle corresponding to the
0:1 mode is embedded in the higher dimensional phase space of the full dynamical
system. It only spans, nevertheless, the (x, v, b) subspace corresponding to the
controller-actuator system (4.5), since in the absence of rolling the other variables
are not changing in time, ω̇ = 0 and φ̇ = 0. In this sense the 0:1 mode of the barrel
robot and on mode of the engine are indeed equivalent.

The embodiment of the robots [11] is demonstrated by the emergence of self-
organized rolling modes solely as a result of the environmental context [14]. The
rolling behavior is realized via limit cycles, generated in the overarching phase
space of the controller, body and environment, as indicated by their projections to
the (vb, x) plane shown in Fig. 4.4. The found rolling modes may be characterized
by the relative frequency of the rolling and the oscillation of the ball, the 1:1 and
1:3 modes denoting, hence, one, respectively three oscillations along the rod per
one rolling of the barrel. These limit cycles are, furthermore, degenerate in the
physical space, due to the previously discussed translational symmetry. Therefore,
the locomotion modes of the barrel robot may be seen as a self-sustained motion on
degenerate attractors.

Thanks to these self-organized modes the robot is able to function for a wide
range of parameter settings. Rolling modes may coexist with the on mode of the
engine, see Fig. 4.3), the presence of stable oscillations in the actuator-controller
system (4.5 is, however, not a requirement for the locomotion of the barrel robot.
Rolling dynamics can also be achieved in the off mode, where the engine kicks in
via the closed sensorimotor loop if the rolling motion has been started from outside.
External momentum is then transferred to the damped spring system via the inertial
forces Fin in Eq. (4.4). In case of the 1:1 mode, this external kick may be seen,
from a dynamical systems point of view, as pushing the phase point to the basin
of attraction of the corresponding limit cycle. This result also illustrates that the
engine is not overpowering the behavior of robot.

Another example of situatedness [165] is provided by the parameter domain
with nr = 2 rolling modes, which are found additionally to the 0:1 mode. The
coexistence of several stable modes can be interpreted in terms of behavioral prim-
itives, allowing for different motion patterns for the same control parameters (see
the three coexisting limit cycles in Fig. 4.4), indicating the sign of multifunction-
ality [166]. Therefore, the robot may easily switch to another motion primitive,
changing qualitatively its behavior, when interacting with the environment.

In Fig. 4.5 we present two bifurcation diagrams corresponding to different pa-
rameter cuts of the phase diagram shown in Fig. 4.3, indicating the average rolling
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Figure 4.4: The rolling and non-rolling modes of the barrel robot shown in Fig. 4.1.
Top row: The time series x(t) = x(a)(t) of the actual position of the ball along the
rod. The gray line at x = 0 is just a guide to eye. Bottom row: The correspond-
ing (x(t), vb(t)) phase-plane projections of the trajectories, compare Fig. 4.2. The
velocity of the barrel is vb(t) = 0 for the non-rolling 0:1 mode (left column) and
vb(t) > 0 for the rolling 1:1 and 1:3 modes (middle and right columns), respec-
tively. The adaption rate and the gain are ε = 0.25 and a = 1.9, respectively, as
indicated by the intersection point of the dashed gray lines in the phase diagram
shown in Fig. 4.3. The other parameters are kept unchanged.

speed 〈vb〉 as a function of the selected control parameters, the adaption rate ε and
the gain a, respectively. The stability domains, ε ∈ [0.018, 0, 55] for the 1:1 and
ε ∈ [0.19, 0.55] for the 1:3 modes, are terminated (presumably) by saddle-node
bifurcations of limit cycles (similarly to the one presented in the bottom plot of
Fig. 2.4). Comparing the two plots of Fig. 4.5, the low-velocity rolling mode (green
dots) is continued either by the 1:1 mode (as in the left panel) or by the 1:3 mode
(right panel). This might look contradicting, nevertheless, it is possible since the
saddle-node curves are oblique in the (ε, a) plane, while the considered cuts being
perpendicular to each other (see Fig. 4.3).

Thanks to the avoided pitchfork bifurcation [1], the locomotion speed can be
increased continuously, 〈vb〉 ∝

√
ε, when shifting slowly the adaption rate from the

low-velocity region to the 1:1 mode, while keeping the gain constant, at a = 1.9. In
the very small adaption rate domain, ε < 0.018, we find, however, another cascade
of limit-cycle bifurcations, where small variations of the control parameter may
lead a qualitative change of the behavior. For adaption rate ε = 0.017, a back-and-
forth rolling motion has been unveiled, where the barrel is swinging around the
initial coordinate. Due to the relatively small stability domain of this mode, a finite
but otherwise very small change of the adaption rate ε may induce a switch in the
rolling direction. Noisy internal parameters would lead, hence, to an explorative
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Figure 4.5: Bifurcation diagrams of the self-organized rolling modes. The average
rolling speed 〈vb〉 for the 1:1 and 1:3 modes (measured along the parameter cuts
shown by the dashed lines in Fig. 4.3) indicated by the green/orange dots and the
blue crosses, respectively. The orange/blue/green curves labeled by question marks
are added by hand to denote the presumable existing unstable limit cycles, which
annihilate the rolling modes at their stability boundaries. The border between the
on and off modes, corresponding to the Hopf bifurcation point in system (4.5) is
denoted by the vertical dashed lines. Left: The bifurcation diagram as a function
of the adaption rate ε for a = 1.9. The color hatching indicates the region of small
adaption rates and low-velocity rolling, together with the additional back-and-forth
mode, as discussed in Fig. 4.6. The dashed black curve is a fit to the average speed,
〈vb〉 ∝

√
ε. Right: Bifurcations as a function of the gain a for ε = 0.25. The

parameters are as for Fig. 4.3.

behavior, since the direction selection depends only on the timing of otherwise
(directionally) neutral perturbations (see Fig. 4.6).

The here presented rolling modes correspond to self-organized limit cycles in
the phase space of the brain, body and environment. Considering barrel robots with
two perpendicular actuators, each of them controlled independently by separate
neurons, we have found several other rolling modes as well (see Ref. [14] for more
details). These modes may be seen as generalized versions of the 1:3 mode, with
many oscillations of the weights during one revolution of the barrel. Therefore,
we assume that barrel robots allow for limit-cycle attractors of arbitrary complexity.

The one-dimensional locomotion of the considered barrel robots is, however,
not convenient for the study of interactions with complex environments. In the
following section, we consider robots with spherical body, which allows for two-
dimensional meandering dynamics on a flat plane. Placing then several robots and
obstacles in one arena, we focus on the dynamical description of their interactions
in terms of the previously introduced attractor picture of motion primitives.
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Figure 4.6: Direction-selection in the locomotion of the barrel robot. The time se-
ries of the rolling speed vb is shown, for a = 0.19, in the low-velocity parameter
region. The two superimposed runs use identical initial conditions, started in the
back-and-forth mode, found for ε = 0.017 (see the color hatching in Fig. 4.5). In
the first 40 time units, the barrel exhibits a symmetrical swinging behavior, with
a vanishing average speed 〈vb〉 = 0. The two scenarios of direction selection are
triggered by the discontinuous change of the adaption rate to ε = 0.02 (correspond-
ing to the 1:1 rolling mode) in different phases of the swinging motion. In the first
run, ε is changed at time t1 = 45, resulting in a rolling to the right, with 〈vb〉 > 0
(dashed line). In the second run, rolling in the opposite direction, with 〈vb〉 < 0, is
induced at time t2 = 53 (dotted line). The other parameters are as for Fig. 4.3. For
the corresponding animation see the supplementary material of Ref. [14].

4.3 Degenerate attractors and symmetry breaking
In this section we increase the complexity of the investigated robots in several
ways. First of all, by considering spherical robots, the dynamics is not constrained
anymore to one-dimensional rolling, thus, more complex behavioral patterns can be
generated. Furthermore, to keep the internal symmetry of the system, we construct
three perpendicular actuators, each of them controlled by a single proprio-sensory
neuron. Finally, based on the results of Chapter 3, we connect the neurons by
dynamical synapses, characterized by short-term synaptic plasticity (STSP) [114].
The resulting robot serves, hence, as a proof of concept to show that STSP may be
used to generate self-organized motor patterns [15].

We now briefly discuss the architecture of the robot. Note, however, that as it
is a generalized version of the barrel robot, we mainly focus on the presentation of
the neural controller. In that, we rely on the content of the previous chapters and
sections. In particular, we refer to the introductory sections describing the dynamics
of neural networks and short-term plasticity mechanisms, see Sec. 3.1.3 We only
repeat, hence, the necessary formula and terminology for a better readability.

4.3.1 Sensorimotor loop with short-term synaptic plasticity
The simulated spherical robot is illustrated in Fig. 4.7. The rolling motion is
generated in a similar manner to the case of the barrel robot (cf. Sec. 4.2.1). Three
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Figure 4.7: Spherical robot with three actuators. Left: A snapshot of the robot
in the LPZRobots simulation environment [12], placed on a flat ground surface.
Right: A sketch of the spherical robot of body mass M . The three weights of in-
dividual masses m (red, green and blue) move along perpendicular rods without
interference. The vertical dashed lines indicate the actual position x(a)

i of the i-th
(here red) weight along the the axis attached to the rod (gray arrow). The damped
spring actuator, with spring constant k and damping γ, then pulls the ball towards
the target position x(t)

i , determined by the the output of a controlling neuron (cf.
Fig. 4.8).

independent weights are moved along perpendicular rods without interference
(they do not collide in the center of the sphere). As a result of the gravitational and
inertial forces acting on the weights, the sphere starts to turn, leading finally to a
rolling dynamics.

The actuators moving the balls of mass m along the respective rods are im-
plemented via the built-in PID controllers (see Sec. 4.2.1) in the LPZRobots
library [12]. When setting the integral term to zero, the dynamics reduces to a
damped spring-block system, compare Eqs. (4.3) and (4.4), with damping γ and
spring constant k. The actual x(a)

i and target positions x(t)
i of the i-th weight are

measured with respect to the local coordinate axis attached to the respective rods
(see the right panel of Fig. 4.7).

Analogously to the controller of the barrel robot, compare Eq. (4.2), the target
position of the i-th weight,

x
(t)
i = 2pR

(
y(xi)−

1

2

)
, x

(t)
i ∈ [−pR, pR]. (4.8)

is determined by the output y(xi) of a single rate encoding neuron, (see Fig. 4.8)
characterized by the sigmoidal transfer function,

y(xi) =
1

1 + ea(b−xi)
, (4.9)

with gain a and threshold b. The p ∈ [0, 1] scaling factor is used to limit the
effective sliding range of the ball within the radius R of the sphere.
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Figure 4.8: The controller of the three-axis spherical robot, illustrated in Fig. 4.7.
Left: Sketch of the sensorimotor loop, showing only one of the three, i = 1, 2, 3,
neuron-controlled actuator modules. Each actuator, consisting of a weight of
mass m and a damped spring, with spring constant k and damping γ, is controlled
by a single neuron. Neuron i receives the actual position x(a)

i ∈ [−R,R] of the i-th
weight as excitatory input, w0(x

(a)
i + pR)/(2pR), with p ∈ [0, 1]. The inhibitory

input −z0ujϕjy(xj) coming from the other two neurons, j 6= i, is modulated by
short-term synaptic plasticity, via Eq. (4.11). The target position x(t)

i for mass i, de-
fined by (4.8), is then determined by the activity of the corresponding neuron y(xi).
Right: The network of the controller neurons, with i = 1, 2, 3 (showing only one
module), when the feedback of the environment is short-cut via x(a)

i = x
(t)
i . The

neurons are coupled to each other via inhibitory synapses with STSP, each of them
having additionally an excitatory self-coupling, compare Eq. (4.12).

In order to investigate the hypothesis that short-term synaptic plasticity can be
used for motor pattern generation, we consider neurons i = 1, 2, 3, modeled as
rate-encoding leaky integrators, characterized by an internal variable xi, associ-
ated with the membrane potential. The actual position of the i-th weight is mea-
sured now indirectly (in contrast to the instantaneous neurons used for the bar-
rel robot), the corresponding neuron receiving it in form of an excitatory input,
(x

(a)
i + pR)/2pR ∈ [0, 1], scaled by the respective synaptic weight w0 > 0. A

closed-loop control, with neurons only receiving excitatory input, would, however,
push the weights to the positive end of the rod, x(a)

i → pR. Since STSP may be ef-
fectively used to destabilize fixpoint attractors as added to the inhibitory couplings
of complementary subnetworks (see Chapter 3), we couple the three neuron by in-
hibitory dynamical synapses. The dynamics of the neural activity is driven, hence,
by the sum of excitatory and inhibitory inputs:

ẋi = −Γxi +
w0

2pR

(
x

(a)
i + pR

)
− z0

∑
j 6=i

ujϕjy(xj), (4.10)

where Γ is the leak rate and z0 > 0 denotes the static inhibitory synaptic weights
(note the minus sign in front of z0), respectively . The inhibitory weights are
modulated via short-term synaptic plasticity, denoting with uj and ϕj the calcium
and neurotransmitter concentration in the corresponding presynaptic terminal (cf.
Fig. 3.1). The dynamics of STSP is described by the full-depletion model intro-
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duced in Sec. 3.1.3:

u̇i =
U(yi)− ui

Tu
, U(yi) = 1 + (Umax − 1)yi

ϕ̇i =
Φ(ui, yi)− ϕi

Tϕ
, Φ(ui, yi) = 1− uiyi

Umax

(4.11)

characterized by the respective time scales Tu and Tϕ. The maximum concentration
is set by the parameter Umax (see Fig. 3.2). We note that by choosing a Umax = 1
parameter, the calcium concentration converges to uj = 1, reducing hence the num-
ber effective variables. Looking at Eq. 4.10 we see that, while the excitatory term is
pushing the weight to the end of the rod, the inhibition coming from the other two
neurons has an opposite effect. However, as we have seen in the previous chapter,
high presynaptic activity, y(xj) = 1, results in the depletion of neurotransmitters,
uj(t)ϕj(t)→ 0, leading typically to transient-state dynamics.

We intend to focus on the employment of the dynamical systems view in the
study of robotic locomotion. Therefore, similarly to the previous section, we mostly
omit the usage of physical units, SI units being implied: seconds / meters for time /
lengths respectively, while the masses are given in units of kilograms. We choose,
however, biologically and physically realistic parameters for the full-depletion
model and for the physical dimensions of the robots, respectively. Therefore, when
presenting time-series plots, we also provide the time units in the axis labels for an
easier interpretation of the results. We consider robots with radius R = 0.25, body
mass M = 1, and weights of masses of m = 1. For the time scales of the calcium
and neurotransmitter dynamics, Tu = 0.3 and Tϕ = 0.6 is used, respectively. The
leak rate is Γ = 20. For the neurons a gain a = 0.4 and threshold b = 0 is set.
The gravitational acceleration and the rolling friction coefficient are the same as for
the barrel robot, g = 9.81 and Ψ = 0.3, respectively. The simulations have been
performed in the LPZRobots environment using a time step of 0.001 units. For
an exhaustive list of all the parameter values with the corresponding units see the
Appendix D.

First, we examine the robot with the reduced full-depletion model, by setting
Umax = 1 in Eq. (4.11). In this way the calcium concentration remains unaffected
by the presynaptic activity, reducing STSP to the depletion of neurotransmitters.

To illustrate the dynamics of the controller-actuator system in the absence of the
environmental feedback, we assume that the weights may be moved instantaneously
to their target positions, as specified by Eq. (4.8). Note that this not only means that
there are no interaction forces, but in this case the whole PID controller is cut out
via short-circuiting the actual and target position signals, x(a)

i = x
(t)
i . Therefore, the

system reduces to a recurrent network of three neurons, the actuators being replaced
by an excitatory self-coupling, as shown in Fig. 4.8. The corresponding excitatory



4.3 Degenerate attractors and symmetry breaking 87

-pR

0

pR

no environment

-pR

0

pR

time [2s]

g=0

Figure 4.9: The dynamics of the controller sketched in Fig. 4.7, showing the time
series of the target positions x(t)

i of the three balls (red, green, blue). Top: The
network controller isolated from the actuator and from the rest of the robot body,
by short cutting the feedback of the environment via setting x

(a)
i = x

(t)
i , defined

by Eq. (4.12). Bottom: The spherical robot suspended in air without gravity, g = 0.
The time series a very similar, but the period of the oscillations is a bit longer in the
latter case. The parameters are Umax = 1 for the full-depletion model (4.11) and
(w0, z0) = (190, 600) for the synaptic weights, which correspond to the C1 mode
shown in Fig. 4.11 and 4.12.

term in Eq. (4.10) is hence replaced by the firing rate of the considered neuron:

ẋi = −Γxi + w0y(xi)− z0

∑
j 6=i

ujϕjy(xj) , (4.12)

since (x
(t)
i + pR)/2pR = y(xi). The corresponding network dynamics is shown

in the top plot of Fig. 4.9, where the activity of the three neurons is transformed
into time series of target positions x(t)

i via Eq. (4.8). In the resulting transient state
dynamics (cf. Sec. 3.2), the neurons are activated sequentially, leading to a periodic
switching of target positions.

One obtains an almost identical behavior when suspending the sphere robot
in the air in the absence of gravity, viz. with g = 0. Due to the damped-spring
actuator, the actual position may only follow the target position with a certain (quite
small) time-delay. Nevertheless, the limit-cycle attractor generates very similar
oscillations in the projection of target positions x(t)

i , though it is embedded in a
significantly higher order phase space. The delayed dynamics is only observable
by the slightly prolonged oscillation period in the bottom plot of Fig. 4.9.

Note that the presented limit cycles are the only attractors of the isolated 3-
neuron network and respectively of the sphere robot system. Placing now the robot
in simple environments, the closed-loop control scheme leads to the self-organized
generation of a whole zoo of motion patterns. In the next section we investigate the
found motion primitives in terms of the attractors formed in the overarching phase
space of the robot-environment system. Furthermore, we give a dynamical systems
type of interpretation of the dynamics of interactions.
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Figure 4.10: Phase diagram of the sphere robot in the parameter plane of excitatory
and inhibitory synaptic weights, (w0, z0), forUmax = 1. The shaded areas denote the
stability domains of the six limit cycles corresponding to the regular motion patterns
shown on the top, as illustrated by the trajectory traces in the plane of locomotion,
viz. in the plane of the environment (compare Fig. 4.11). The trajectories are color
coded, using the same conventions as the one used for the stability domains, while
the respective (w0, z0) parameter pairs are indicated via the labeled black triangles.
The arrows pointing to the black dots indicate two examples of parameter sets,
(200, 360) and (210, 400), for which the robot exhibits chaotic motion.

4.3.2 Motion patterns as degenerate attractors
In Sec. 4.2.2 we have seen that the dynamics of barrel robots, though different
patterns are possible, may be reduced to a one-dimensional locomotion. The
spherical shape of the here considered robots allows, however, for locomotion in
all directions, leading to more complex behavior patterns as well. To investigate
the possible motion primitives, we consider two controller setups with Umax = 1
and Umax = 4, respectively. Note that in the first case only synaptic depression is
allowed, without calcium dynamics in the full-depletion model (4.11).

The phase diagram of regular motions patterns in the plane of the bare synaptic
weight parameters (w0, z0), is divided into several overlapping stability regions, as
shown in Fig. 4.10 for Umax = 1. An example of the corresponding locomotion
trajectories is illustrated in Fig. 4.11. The spherical body shape tends to produce
meandering motion patterns (for animations of the behavior see the supplementary
material of Ref. [15]). In the C1 mode the trajectory is almost circular. The T1 and
T2 modes, with torus attractors in the phase space, generate star-like trajectories,
where the robot is rolling back-and-forth while also turning one one direction.
Contrary to the previous three motion patterns, in the S1, S2 and S3 modes we see
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Figure 4.11: A snapshot of the simulation with six copies of the sphere robot placed
on a flat plane in the LPZRobots environment. The robots have identical parame-
ter settings, except for the (w0, z0) parameters, which have been set corresponding
to the regular rolling modes, indicated by labeled black triangles in the phase di-
agram presented in Fig. 4.10: T1 (magenta) - (280, 650), T2 (cyan) - (230, 415),
C1 (orange) - (190, 600), S1 (blue) - (250, 530), S2 (red) - (240, 380), S3 (green) -
(220, 470). The color lines are showing the traces of the trajectories in the plane
of locomotion. The green and blue robots switch to coexisting attractors as a result
of collisions with the yellow and respectively the red spheres. The latter one, in
the absence of multistability, changes only the direction of locomotion, when col-
liding for example with the magenta robot. For the corresponding video see the
supplementary material of Ref. [15].

a meandering snake-like motion in a certain direction.

The differences of the rolling patterns are also reflected by the motion of the
weights along the perpendicular rods, see Fig. 4.12. For C1, T2 and S2 all the
three weights are oscillating, either phase-shifted with respect to each other, or
in a pair-wise (partially) synchronized manner. However, in the T1, S1 and S3
modes one of the balls is never crossing the center of the sphere. The period of the
oscillations, while being close to the natural period of the controller (cf. Fig. 4.9),
may also differ significantly from each other. Note that the actual positions x(a)

i of
the balls may overshoot the interval of target positions, x(t)

i ∈ [−pR, pR], due to
the inertial forces and the gravitational pull acting on them. Choosing p = 1/2 for
scaling factor keeps, however, the motion inside the sphere.

Since both the isolated controller network and the weightlessness robot posses
only one limit-cycle attractor, the complex set of patterns found in simple plane
environments (with gravity) provides another proof of embodiment. Comparing
the time series corresponding to the six different rolling modes to the time series
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Figure 4.12: Time series of the actual positions x(a)
i of the three weights (red, green,

blue), compare Fig. 4.7. The selected regular motions patterns are labeled in the
right side of the plots, using identical parameter settings as in Fig. 4.11. The small
tick marks on the time axis indicate intervals of 2 seconds.

of the isolated network, we see that the C1 mode is topologically equivalent to
the one presented in Fig. 4.9. Therefore, the C1 mode may be seen as the driver
of the dynamics, also having the largest region of stability among the observed
self-organized patterns, cf. Fig. 4.10.

The stability domains presented in Fig. 4.10 terminate presumably by saddle-
node bifurcations of limit cycles [1]. When multiple attractors coexist, chaotic
behavior is often generated in the form a an overarching attractor, combining the
destabilized separate limit-cycle trajectories [7]. Such phenomena may be observed
at the boundary of the stability regions of the C1, S1, T2, and S2 modes, where
chaotic behavior has been found (cf. Fig. 4.10). Since long transients may occur
close to a chaotic phase, the systematic study of their exact extent may be difficult.
The examples of chaotic dynamics discussed here are stable both in the long term
limit and in the presence of external noise as well (see Appendix D.3). The chaotic
mode generates a random-walk-like meandering dynamics in open spaces, as shown
in Fig. 4.13, which may be considered as a basic explorative behavior [167].

Note that the dynamics of the robots moving on a horizontal plane is invariant
under translations and rotations about the vertical axis. In other words, the space
is homogeneous and isotropic with respect to locomotion. This invariance allows
for the formation of regular and chaotic attractors corresponding to different lo-
comotion modes. These attractors, while being bounded in the phase space of the
internal variables (cf. the phase plane plots of the barrel robot in Fig. 4.4), form
overlapping continua in the physical (external) space. It is this continuum that
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Figure 4.13: Chaotic meandering of the sphere robot in open space and in struc-
tured environments. Snapshots of the trajectory traces are shown in the chaotic
mode, for Umax = 1 and (w0, z0) = (210, 400). Left: The trajectory in open place,
indicating chaotic explorative behavior. Small segments of the trace resemble that
of the S2 mode, which is however unstable here (see Fig. 4.11). Right: The dynam-
ics in a closed environment with movable objects (yellow blocks). The circular-like
trajectory, corresponding to an unstable C1 limit cycle, is induced by the collisions
with the obstacles. For a video of the behavior see the suppl. material of Ref. [15].

permits the description of motion patterns in terms of degenerate attractors (see
Sec. 1.1.4). The initial conditions - defined in the subspace of internal variables -
determine, hence, which of the possibly more coexisting degenerate attractors will
be approached in the asymptotic limit.

In the next section we investigate what happens if we place the robot in a struc-
tured environment, where translational and rotational symmetries may only be lo-
cally available. A manifest example for such an environment can be realized by
placing static boundaries on the previously used infinite plane. The system is then
characterized by only local symmetries, which are broken as soon as the robot col-
lides with something.

4.3.3 Interactions as autonomous mode switching
Among the simplest interactions robots may have with their surroundings are
collisions, produced when locomoting agents bump into obstacles. Collisions are
generally thought to be undesirable events during robotic locomotion, cause it
might potentially damage both the robot itself or the environment. There is a great
deal of effort put in the research of obstacle avoidance via using adaptive neural
controllers [168], much less known is, however, about the dynamics of collisions
in terms of the attractors, which are driving the motions. Here, we investigate the
interactions both with passive and with active elements of the environment, viz.
movable obstacles and other spherical robots, respectively.

Keeping the horizontal plane, we place fixed walls in form of a large polygonal-
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Figure 4.14: Phase diagram of the sphere robot in the parameter plane (w0, z0)
obtained when using Umax = 4 in the full-depletion model (4.11). The naming and
color coding of the locomotion modes corresponds to the ones in Fig. 4.10. Traces
of trajectories in the plane of locomotion are provided on the right of the figure
for the C1, T2 and S2 modes, corresponding to the parameters indicated by the
labeled black triangles. An example of chaotic state, coexisting with the C1 mode,
is marked by the black dot at the tip of the arrow, for (w0, z0) = (180, 80). The
other parameters are kept unchanged, see Appendix D.

shaped arena, around the robot. Furthermore, movable obstacles, with masses
similar to the robots own total mass, are scattered around, as in the right picture
of Fig. 4.13. We let the robot wander around using the parameter settings of the
chaotic mode (shown on the left). In this structured environment one observes that
the robot is roaming among the obstacles, exploring different regions of the avail-
able space. In the right picture of Fig. 4.13 we show a snapshot of this explorative
behavior, illustrating the trajectory corresponding to a time interval when the robot
stays close for a while to the yellow block. The trajectory traces out the C1 circular
mode, which is however not stable for the used parameter settings (cf. Fig. 4.10).
This is possible since the selected chaotic mode exists close to the borders of the
C1 stability domain. Unstable C1-type limit cycles are hence expected to exist
embedded in the chaotic attractor (for an example, compare the chaotic and regular
orbits of the prototype system shown in Fig. 2.7 in Chapter 2). The walls and
objects of the arena break the translational symmetry of the plane, so the trajectory
cannot settle on attractors in the overarching phase space of the system. The active
exploration of the environment, with the robot bumping into obstacles, gives how-
ever access to otherwise unstable limit cycle options. The resulting dynamics may
also be interpreted (by an external observer not knowing the system) as explorative
playful behavior in a playground [12].

Symmetry breaking may also be caused by other active agents roaming around
on the otherwise empty ground plane. In Fig. 4.11 we illustrate the interactions of
six copies of the presented spherical robots, with parameter settings corresponding
to the six representative examples of regular locomotion patterns shown in Fig. 4.10.
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Figure 4.15: Smooth chaotic wandering on a horizontal ground plane. The snap-
shot with the blue trajectory of the sphere robot is made for the Umax = 4 and
(w0, z0) = (180, 80) parameters, indicated by the arrow in Fig. 4.14. The dynamics
is substantially smoother than the chaotic exploration observed for the Umax = 1
case (compare Fig. 4.13).

Since several stable attractors coexist for the selected (w0, z0) parameters, interac-
tions with other robots lead to autonomous switching between these locomotion
modes. The green robot, started in S2 mode, switches to S1 as a result of colliding
with the yellow agent. Similarly, the blue robot ends up circulating in C1 mode
after the collision with the red sphere. The latter one, being a global stable attractor,
changes only the direction of locomotion whenever it bumps into other robots (here
magenta and blue).

4.3.4 Smooth chaotic meandering
The rolling modes presented so far have been obtained with an inactive calcium
dynamics, by setting Umax = 1 in the full-depletion model (4.11). With Umax = 4
one may also enable the interaction of facilitation and depression mechanisms in
the STSP rules. The corresponding phase diagram shown in Fig. 4.14 reveals a
set of similar locomotion modes to ones discussed previously (cf. Fig. 4.10), with
the main difference being the reduced range of inhibitory weights z0. The chaotic
mode found for (w0, z0) = (180, 80) allows for a biologically more realistic,
smooth exploration of the space, changing the average direction of propagation
relatively slowly, compared to the distance traveled in a quasi-straight line, see
Fig. 4.15. This may be surprising in many respects, knowing that chaotic behavior
is characterized generally by unpredictability (see Sec. 1.1.3).

This type of dynamics we have investigated in the framework of another
project [29], not discussed in the present thesis. We have shown that a partially
predictable type of chaos (PPC) does indeed exist, and may generally be found
between period-doubling bifurcations and strongly chaotic parameter regimes. We
proposed, furthermore, a simple 0-1 test for an efficient identification of PPC. By
measuring the cross-correlation between initially close-by trajectories, we have
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Figure 4.16: Comparison of the two chaotic meandering modes. Shown are the
corresponding strongly chaotic (left) and partially predictable chaotic attractors
(right), projected to the phase plane of actual positions (x

(a)
2 , x

(a)
3 ), using (w0, z0) =

(210, 400) with Umax = 1 on the left, and (w0, z0) = (180, 80) with Umax = 4 on
the right. Note that due to the symmetry breaking dynamics of the weights, compare
Fig. 4.17, there are actually three, symmetry related PPC attractors (only one is
shown here).

shown that PPC is characterized by correlations persisting for exceedingly long
times. The name, partially predictable chaos reflects hence the fact that the dy-
namics remains predictable - up to a certain level of precision - for time scales
significantly longer, than the prediction time determined by the inverse Lyapunov
exponent [23]. This is possible due to the special topology of the PPC attractors,
which may be imagined as braid-like broadened limit-cycles. Trajectories started
from small initial distances are exponentially diverging from each other in a per-
pendicular direction to the braids, the final decorrelation occurs, however, in a
diffusive manner along flow [29].

Chaotic attractors generating PPC can be recognized hence by the formation
braid-like structures in the phase space of the dynamical system. In Fig. 4.16 we
compare the attractors of the chaotic locomotion modes found for Umax = 1 and
Umax = 4, respectively. Though we may only be able to visualize a low dimensional
projection of the degenerate chaotic attractors embedded into a high dimensional
phase space, the topological differences can be easily identified. The PPC attractor
shown in the right plot of Fig. 4.16 indeed resembles a limit cycle with a braid-like
structure, in contrast to the strong chaos one on the left, which allows for a qualita-
tively stronger mixing of the trajectories.

Both chaotic meandering modes are qualitatively similar to the S2 snake-like
locomotion, which is accompanied by an irregular turning behavior in the plane
of propagation. Note however that the S2 limit-cycle attractor has two types of
degeneracies. The continuous degeneracy, as discussed previously, allows it to
propagate in any direction. There is additionally a spontaneous symmetry breaking
in the S2 mode, corresponding to a discrete degeneracy, since one of the weights is
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Figure 4.17: Time-series corresponding to the chaotic attractors presented in
Fig. 4.16. Shown are the actual positions x(a)

i of the three weights (red, green,
blue) as a function of time (in units of 2 seconds). Top: Strong chaos for Umax = 1
and (w0, z0) = (210, 400) shown in Fig. 4.13. Bottom: Partially predictable chaos
for the Umax = 4 and (w0, z0) = (180, 80) shown in Fig. 4.15. Both modes are lo-
cally similar to the time-series of the S2 mode, compare Fig. 4.12). Note that phase
slips only occur for strong chaos.

always kept in the lower half of the rod, while the other two weights are oscillating
phase-shifted (see Fig. 4.12). This discrete degeneracy is present also in the PPC
mode for Umax = 4, as indicated by the corresponding time-series of Fig. 4.17. The
smooth chaotic meandering is hence a consequence of a slow diffusion of the angle
of propagation, which corresponds to the phase diffusion along the braids of the
attractor. We observe, on the other hand, a discrete mode switching in the strongly
chaotic mode for Umax = 1, tracing out occasionally one of the S2-like unstable
limit cycles embedded in the chaotic attractor.

Though partially predictable chaos generates regular looking time series, see
Fig. 4.17, the smooth diffusion of the propagation angle allows for the effective
exploration of unknown, complex environments. Due to the only locally available
symmetries, collisions induce further mode switching. In Fig. 4.18 we show two
stages of such an explorative behavior in a simple maze, consisting of a rectangular
arena and internal walls. Since the chaotic mode for Umax = 4 coexists with the C1
circular shaped locomotion pattern, the robot switches intermittently between the
two qualitatively different rolling modes. After long time, practically every single
point of the arena may be visited.

4.4 Discussion
In this chapter we have investigated the dynamics of simple rolling robots in the
LPZRobots simulations environment [12]. In order to allow for a detailed dy-
namical systems analysis of the locomotion patterns we considered cylindrical
and spherical shaped robots, controlled by one, respectively three proprioceptual
neurons, which may only measure the actual state of the body. The rolling motion
is generated indirectly via moving internal weights along rods fixed to the barrel-
or sphere-shaped robot-bodies. The neurons, characterized either by an adapting
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Figure 4.18: Chaotic exploration in a maze. The trajectory of the robot is indicated
by the thin red curves in the partially predictable chaotic mode, for the Umax = 4
and (w0, z0) = (180, 80) parameters. Left: An initial phase of the exploration
showing the first 83 minutes of the simulation. Right: The visited locations after
1000 minutes. The robot may get stuck temporarily in corners, but due to the chaotic
behavior it can always escape. After collisions it may switch to the C1 mode, as
that is a coexisting stable limit cycle. The corresponding radius of circulation is,
however, so large (in this case) that the trajectory cannot retrace in itself.

threshold mechanism [164] or by dynamic inhibitory synapses [51], receive the
actual positions of the weights and generate putative target positions for the next
time step. The weights are then moved to the respective target positions via PD
controllers, modeled as damped-spring systems.

In the absence of overpowering top-down control mechanisms, the dynamical
behavior of the robots is self-organized due to the local instabilities generated by
the neural dynamics [12]. The robots are hence fully embodied [13], since there
would be either no locomotion at all, if the sensorimotor loop was interrupted, or
only a very limited set of internal control patterns would exist. By following this
approach, we propose a dynamical systems type definition of embodiment. This
relies on the comparison of the possible locomotion patterns and the internally
generated patterns in the absence of the environmental feedback. As an example
we have shown, that our barrel robot is also able to generate rolling dynamics,
when the isolated actuator-controller system would otherwise converge to a stable
fixpoint with no internal motion at all [14]. Furthermore, the emerging rolling
modes, which appear additionally to the controller’s own dynamics, demonstrate
that the feedback of environment is indeed essential in the development of complex
behavior primitives (similar conclusions has been drawn in Ref. [160]).

We have shown that the resulting locomotion modes correspond to self-
organized limit-cycle and chaotic attractors in the combined phase space of internal
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variables of the robot (body, actuator and controller) and of the external variables
related to the environment. This separation is possible whenever the internal vari-
ables span an independent subspace of the system [15]. The dynamics of the barrel
and spherical robots is independent of the position of the agent and the direction
of propagation. These external variables are however still necessary for the inter-
pretation of the behavior as robotic locomotion in general, or explorative behavior
in particular. Due to the global symmetries the attractors are degenerate, forming a
continuum in the plane of locomotion. When coexisting attractors are present, viz.
in case of multistable systems [5], the long-term behavior depends on the initial
conditions of internal variables, that determine which of the available attractors is
selected from the overlapping continua.

In the absence of global symmetries of the physical space one can not talk -
in the strict sense - about attractors in the overarching phase space. For practical
applications it is, however, enough to consider local symmetries. Since most of the
(human-made) world is highly structured, one may approximate it as the collection
of locally symmetric areas attached to each other (e. g. a room, a staircase, a
segment of the pavement). Each of these components may be extended virtually
into an infinite manifold, for which the degenerate attractors are again well defined,
being characterized by global symmetries. In structured environments, the loco-
motion may hence be interpreted in terms of these transiently attracting states [42],
corresponding to the virtual attractors. Collisions with the static elements of the
environment lead to a symmetry breaking, resetting the initial conditions of the
system, allowing hence the switching between motion patterns, or giving access
to otherwise unstable, non-attracting modes. Interactions with other agents can be
interpreted analogously in terms of (discontinuous) attractor metadynamics [76].

We have also revealed a partially predictable chaotic phase [29] which allows
for a smooth meandering in structured environments. The robots are able to explore
complex maze-like arenas, without getting stuck in dead ends or in the corners of
the corridors.

Our investigation is embedded in the long-standing effort to reduce the com-
plexity of the control of robotic locomotion [16, 17], focusing in particular on the
formation of attractors in the combined phase space of the robot and environment.
This approach has been successful in understanding locomotion gaits in terms of
limit-cycle attractors [18], we believe however that a systematic (dynamical sys-
tems type) theory of robotic locomotion would contribute significantly both to the
design and to the construction of autonomous robots. The work presented here may
be considered as the first steps in this direction.
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Chapter 5

Conclusions

In this work we have discussed new extensions and applications of dynamical
systems theory in various fields, such as computational neuroscience and robo-
physics. We argued that extending the scope of classical concepts, like attractors,
stability, and bifurcations, to high dimensional systems, may help in finding general
principles underlying their dynamical behavior. We have stressed, however, that
new methods also need to be developed, which allow for the design of dynamical
systems with predefined properties, for the understanding of attractors in terms of
embedded manifolds, or in general, for a more effective investigation of complex
adaptive systems. The here presented contributions to the field aim to bridge the
gap between low dimensional standard dynamical systems and high dimensional
complex systems with applications in neuroscience and robotics.

Firstly, we have introduced a new mechanistic design procedure for construct-
ing high dimensional multistable systems, which are ubiquitous in all areas of
science [7]. The proposed versatile class of prototype dynamical systems allows for
creating fixpoint, limit-cycle or chaotic attractors at predefined spacial coordinates
(in a subspace of the system). We presented examples of 2- and 4-dimensional
systems by constructing detailed bifurcation diagrams, providing also a general
analytic proof for the generations of stable fixpoints and limit-cycles in arbitrary
dimensions.

Secondly, using a neural network model with coexisting fixpoint attractors,
we have demonstrated that transient-state dynamics may be generated by adding
slow local variables to a multistable system [51]. Considering clique-encoding
attractor networks of different sizes, we have shown that the stable fixpoints, cor-
responding to active cliques of excitatory neurons, are destabilized as a result of
adding dynamic synapses exhibiting short-term synaptic plasticity. The generated
transient-state dynamics corresponds to stable limit-cycle and chaotic attractors, in
which the trajectory revisits the slow manifolds of former attractors.
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Finally, we have extended the dynamical systems approach to the study of
robotic locomotion, showing that motion patterns correspond to self-organized
degenerate attractors in the combined phase space of the robot and environ-
ment [14, 15]. We considered cylindrical and spherical shaped rolling robots, for
which the controllers consist of a single or respectively three proprioceptual neu-
rons. By comparing the attractors of the actuator-controller system to the attractors
of locomotion emerging in the overarching phase space, we coined a dynamical
systems type of definition of embodiment and situatedness for locomoting robots.
Investigating the stability domains of different rolling modes, we have also pro-
vided a novel interpretation of interactions with the passive and active constituents
of the environment in terms of switching between coexisting attractors or attractor
ruins of the system.

The results listed above confirm that multistable systems are able to generate
many interesting phenomena: complex bifurcation cascades, transients-state dy-
namics and switching behavior. Whether the foundations of dynamical systems
theory with the geometric view of attractors and trajectories does inhere the poten-
tial to be generalized and effectively extended to arbitrary high dimensional phase
spaces still remains to be determined. There has been a growing desire to develop
a general theory for overarching the gap between simple nonlinear systems [24]
and quasi-infinite dimensional thermodynamic systems [169]. Several problems
have been addressed in this context, ranging from the fundamental structure of
regular windows occurring in higher dimensional chaotic systems [170] to the
reconstruction of complex systems from measured data and time series [171].

To look at the bigger picture, we may zoom out even further and consider
nonautonomous [25], modular [172], random [173] or time-delayed dynamical sys-
tems [174] as well. This opens up a whole world of exciting questions and prob-
lems, for which, especially in case of high dimensional state spaces, generic routes
of solutions do not yet exist:

• Effect of delays. How can we handle delays in large neural networks? Is there
a need to build delayed feedback mechanisms in artificial cognitive agents?

• Modulation vs. driving. For nonautonomous systems, is there a qualitative
difference between modulation and driving? Is our brain only modulated by
the sensori information or completely driven?

• Nonautonomous attractors. Can we interpret the dynamics of interacting or
input-driven systems in terms of the autonomous attractors, and, if yes under
which conditions?

The presented novel applications to complex adaptive and cognitive systems pro-
vide promising results. We believe, hence, that the questions posed above suggest
new research goals, which are worth pursuing in the future.



Appendix A

Dynamical systems

A.1 Phase space contraction rate
In three dimensions the change of a finite volume of a connected domain D(t),
with arbitrary size and shape, can be expressed using the Leibniz integral rule for
differentiation under the integral sign:

dD(t)

dt
=

d

dt

∫
D(t)

dV =

∮
∂D(t)

vb · dS =

∮
∂D(t)

f · dS =

∫
D(t)

∇ · f dV (A.1)

where vb = f denotes the speed of the boundary ∂D(t) of the domain D(t), while
dV , dS are infinitesimal volume element and surface vector, respectively. Now,
assuming that σ(x) = ∇ · f is constant within the infinitesimal phase space volume
D(t) = V (t)→ 0 around point x, we can write:

dV (t)

dt
= σ(x)V (t) . (A.2)

As an alternative approach [1] one can consider an n dimensional hypercube of
volume V (t) and edge length ∆xi(t):

V (t) =
∏
i

∆xi(t) , ∆xi(t) = x′i(t)− xi(t) . (A.3)

The time derivative of the infinitesimal phase space volume, i. e. when ∆xi → 0,
can then be expressed in terms of the contraction rate σ(x) = ∇ · f as:

dV (t)

dt
=

d

dt

∏
i

∆xi(t) = V (t)
∑
i

∂fi
∂xi

= (∇ · f)V (t) = σ(x)V (t) , (A.4)

since ẋi = fi(. . . , xi, . . . ) and ẋi′ = fi(. . . , x
′
i, . . . ), and using the definition of

partial derivatives,

∂fi
∂xi

= lim
∆xi→0

fi(. . . , xi + ∆xi, . . . )− fi(. . . , xi, . . . )
∆xi

. (A.5)
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A.2 Box-counting dimension
The box counting dimension is a natural generalization of the concept of dimension
for fractal sets. Assuming that a fractal set lies in the n dimensional phase space,
we can imagine covering the space by a grid of n dimensional hypercubes of edge
length ε � 1. Counting then the minimum number of hypercubes N(ε) needed to
cover the entire set yields a power law scaling with a negative power −D, where
D > 0 [22, 23]. The generally non-integer quantity D ∈ R is called the box
counting dimension,

D =
lnN(ε)

ln 1/ε
, N(ε) ∼ ε−D , ε� 1 , (A.6)

which reduces to the traditional integer dimension values, D ∈ N, in case of non-
fractal structures.

A.3 Lyapunov exponents
Here we briefly discuss the definition of the Lyapunov spectrum in case of maps.
The spectrum of Lyapunov exponents, λk, can be defined analogously to Eq. 1.14,
considering non-typical initial directions, δx0 → 0, as well [28]. The time evolution
of a perturbed trajectory, xt + δxt, can be expressed as:

xt + δxt = m(t)(x0 + δx0) ≈m(t)(x0) + Jm(t)(x0)δx0 , (A.7)

where m(t) denotes the t-th iterate of the map, while Jm(t)(x0) is the corresponding
Jacobian. The absolute value of the perturbation at time t is given (see Eq. (1.12))
hence by:

|δxt| =
(
δxT

0 U(x0, t)δx0

) 1
2 , U(x0, t) = JT

m(t)(x0)Jm(t)(x0) (A.8)

with the T superscript denoting the transpose of the respective vector or matrix.
Note that the U(x0, t) matrix is a real symmetric matrix, having an orthogonal set
of eigenvectors uk and positive eigenvalues αk(t) > 0.

According to the Oseledets theorem [22] in the limit of t → ∞ the Lya-
punov exponents λk are independent of the initial position x0, resulting in (compare
Eq. (1.14))

λk = lim
t→∞

1

t
ln
|δxt|
|δx0|

= lim
t→∞

1

2t
ln
δxT

0 U(x0, t)δx0

|δx0|2
= lim

t→∞

lnαk(t)

2t
. (A.9)

The existence of the limit is guaranteed by the Oseledets theorem under very
general circumstances [28]. The direction of initial perturbation δx0, with re-
spect to the orthogonal basis set uk, determines then which of the eigenvalues
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α1 > α2 > . . . > αn > 0 is selected by the limit. Since a typical perturba-
tion would generally have a finite component in the u1 direction, corresponding
to the maximal (largest) Lyapunov exponent λm = λ1, the numerical computation
of the full spectrum is not always straightforward. In practice, when attempting
to compute the Lyapunov exponents λk numerically, one may follow for example
Bennetin’s method [175], which relies on the Gramm-Schmidt orthogonalization
procedure [22] for estimating the individual uk directions.

A.4 Coordinate transformations and stability
In Chapter 1 we argued that it is often more convenient to investigate the behavior
of a dynamical system in terms of new variables. This change of variables involves
generally a nonlinear coordinate transformation. It is, however, not obvious how
the transformation affects the flow in the phase space.

Here, we show that transformations may not change stability of attractors, viz.
to give an example, a stable fixpoint or limit cycle remains stable in the new coordi-
nate system as well. After defining linear and nonlinear transformations, we prove
that for fixpoints of flows and for periodic points of maps the nonlinear change of
variables reduces to a simple linear transformation. The eigenvalues, characteriz-
ing their stability, remain hence unchanged even under nonlinear transformations.
Finally, we demonstrate that this is not generally true for the other points (not fix-
points) of the phase space, allowing for example for a qualitatively different phase
space dynamics with respect to the one in the original coordinate system.

A.4.1 Linear transformations and eigenvalues
It is easy to show that the eigenvalues λ ∈ C of an n×n real matrix A, correspond-
ing to eigenvectors x,

Ax = λx , x = (x1, . . . , xn) , (A.10)

are invariant under linear coordinate transformations,

y = T−1x , y = (y1, . . . , yn) , (A.11)

where T is the n× n matrix form of a linear transformation:

By = λy , B = T−1AT . (A.12)

Therefore, matrix B (which is just the equivalent of A but represented in the new
basis) has the same eigenvalues λ as in the original coordinate system.
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A.4.2 Nonlinear transformations
Turning now to smooth but nonlinear, invertible coordinate transformations by con-
sidering:

y = g(x) , g = (g1, . . . , gn) , (A.13)

with the inverse transformation

x = g−1(y) , g−1 = (g−1
1 , . . . , g−1

n ) , (A.14)

we can linearize Eq. (A.13) around any point x∗:

δy = Jg(x∗)δx , x = x∗ + δx , y = y∗ + δy , (A.15)

where |δx| → 0 and |δy| → 0. The symbol Jg(x∗) denotes the Jacobian matrix

Jg =
∂(g1, . . . , gn)

∂(x1, . . . , xn)
=
∂g

∂x
, (Jg(x∗))ij =

∂gi(x)

∂xj

∣∣∣∣
x∗

(A.16)

evaluated at point x∗. Hence, nonlinear transformations can be locally replaced
by a linear transformation T = Jg

−1, corresponding to the inverse of Jacobian
matrix Jg.

A.4.3 Fixpoints of continuous time systems
Applying now the nonlinear transformation y = g(x) to the phase space of a gen-
eral dynamical system, as defined by Eq. (1.1), one can express the ODE in terms
of the new variables y:

ẏ =
∂g

∂x
ẋ = Jg(x(y)) f(x(y)) = h(y) , (A.17)

where h denotes the new right-hand-side vector function defining the dynamics.
We can perform now the linearization around y∗ = g(x∗), with y = y∗ + δy and
|δy| → 0, analogously to Eq. (1.10), in the new coordinate system:

ẏ = h(y) ≈ h(y∗) + Jh(y∗)δy + . . . , (A.18)

with the Jacobian matrix Jh(y∗) evaluated at point y∗:

Jh =
∂(h1, . . . , hn)

∂(y1, . . . , yn)
=
∂h

∂y
, (Jh(y∗))ij =

∂hi(y)

∂yj

∣∣∣∣
y∗
. (A.19)

Using Eq. (A.17), the Jacobian Jh can be calculated with the generalized chain rule:

∂h

∂y
=

∂

∂y

(
∂g

∂x

)
f(x(y)) +

∂g

∂x

∂f

∂x

∂x

∂y

=
∂

∂y

(
∂g

∂x

)
f(x(y)) +

∂g

∂x

∂f

∂x

(
∂g

∂x

)−1

,

(A.20)
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where we have used that matrices of partial derivatives satisfy

∂x

∂y
=

(
∂y

∂x

)−1

=

(
∂g

∂x

)−1

. (A.21)

Hence, if x∗ is a fixpoint, f(x∗) = 0, the Jacobian Jh is related to the original
matrix Jf by a linear transformation:

Jh = H̄ f(x∗) + Jg Jf (Jg)−1 = Jg Jf (Jg)−1 . (A.22)

Here H̄ denotes a three dimensional matrix, which can be written, by using the
Einstein summation convention as:(

H̄
)
ijk

=
∂

∂xl

(
∂gi
∂xk

)
∂xl
∂yj

, H̄ =
∂

∂y

(
∂g

∂x

)
. (A.23)

We can conclude, hence, that the eigenvalues, and thus the stability of a fixpoint
does not change under any smooth, invertible nonlinear coordinate transformation.

This does not preclude, however, that the phase space contraction rate of general
points, different from equilibrium points, σ(x) = tr(J(x)), changes when going
from one coordinate system to another.

A.4.4 Fixpoints of maps
One can show analogously that, as expected, the conclusion from above also holds
for discrete time maps (1.2). The coordinate transformation y = g(x) yields an
equivalent map, denoted here by M:

yt+1 = g(xt+1) = g (m(xt)) = M(yt) , (A.24)

and the corresponding Jacobian:

JM =
∂(M1, . . . ,Mn)

∂(y1, . . . , yn)
=
∂M

∂y
, (JM(y∗))ij =

∂Mi(y)

∂yj

∣∣∣∣
y∗
, (A.25)

Assuming again that x∗ is a fixpoint, x∗t+1 = m(x∗t ), the matrix can be written via

∂M

∂y
=

∂g

∂m

∂m

∂x

∂x

∂y
=
∂g

∂x

∂m

∂x

(
∂g

∂x

)−1

. (A.26)

as a linear transformation of Jm:

JM = Jg Jm (Jg)−1 (A.27)

Consequently, nonlinear variable transformations do not change the stability of
fixpoints.

Furthermore, since limit cycles can be represented as fixpoints of the corre-
sponding Poincarè maps, the arguments from above also hold in that case. Thus
one should expect that limit cycles do not “get destroyed” by change of variables.



106 A. Dynamical systems

A.4.5 Phase space contraction
To present an interesting example of how coordinate transformations affect the
phase space contraction rate we consider the normal form of a Hopf-bifurcation
in polar coordinates (r, ϕ) [1]:

ṙ = f1(r, ϕ) = r(Γ− r2)

ϕ̇ = f2(r, ϕ) = ω ,
(A.28)

where ω is a constant angular velocity, while Γ > 0 is setting the radius of the limit
cycle, r∗1 =

√
Γ. The fixpoint r∗0 = 0 of the radial part is only stable for Γ < 0, i. e.

before the supercritical Hopf-bifurcation occurring at Γ = 0. Using the well-known
transformations back to Cartesian coordinates,

x = g1(r, ϕ) = r cosϕ

y = g2(r, ϕ) = r sinϕ ,
(A.29)

we get the equivalent set of ODE-s:

ẋ = h1(r, ϕ) = −ωy + x(Γ− x2 − y2)

ẏ = h2(r, ϕ) = ωx+ y(Γ− x2 − y2) ,
(A.30)

which describes the dynamics in the (x, y) space.

We can calculate now the phase space contraction rate in both representations
using Eq. (1.3):

σ(r, ϕ) = ∇ · f = tr(Jf ) = Γ− 3r2 , (A.31)
σ(x, y) = ∇ · h = tr(Jh) = 2Γ− 4r2 . (A.32)

As we can see, the contraction rate depends on the coordinate system consid-
ered. It is, however, always negative at the radius of the cycle, σ(r∗1, ϕ) =
σ(x∗1(ϕ), y∗1(ϕ)) = −2Γ. Thus, the limit cycle is an attractor in both coordinate sys-
tems. On the other hand, r∗1 =

√
Γ is not a fixpoint of the full system, f1(r∗1, ϕ) = 0

but f2(r∗1, ϕ) 6= 0. Hence, the transformation changes the eigenvalues of the Ja-
cobian calculated at this radius. The sum of eigenvalues, i. e. the contraction rate,
nevertheless, remains invariant under this transformation.
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Prototype system

B.1 Potential wells with arbitrary shape
Here, we provide a simple generalization of the potential functions introduced
in Sec. 2.2.3 of Chapter 2, to construct minima of arbitrary shapes. Consider
the potential V (x) defined by Eq. (2.9) having M number of predefined minima
V (xm) = Vm at positions xm. By replacing the original gm(z) hyperbolic tangent
function in Eq. (2.9) to the

gs
m(∆x) = tanh

(
|∆x|

zs
m(∆x)

)2

, (B.1)

non-symmetric version, one can control the shape of the potential well around the
minimum by suitably defined auxiliary functions zs

m(∆x).

As an example we consider the 2-dimensional potential function,

V (x) = gs
1(x− x1) gs

2(x− x2) , (B.2)

with two minima at x1 = (−1, 1) and x2 = (1,−1), respectively. The symmetric
double-well potential, used in Chapter 2, may be easily reproduced for constant
shaping functions, zs

1,2(∆x) = z1,2, as shown in the left panel of Fig. B.1.

Considering general zs
m functions one can easily create minima of arbitrary

shapes. To compare the potential functions with symmetric and non-symmetric
minima, in the right plot of Fig. B.1 two possible shapes are presented, using the:

zs
1(∆x) = z1 + a1 cos(2θ)

zs
2(∆x) = z2 + a2 cos(θ) · (cos(θ)− 1) · (cos(θ) + 1)

(B.3)

shaping functions, respectively. The angle,

θ = θ(∆x) = arccos(∆x1/|∆x|) (B.4)

is measured between the ∆x = (∆x1,∆x2) vector and the x1 axis.
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Figure B.1: Comparison of double well potential functions. The color coding for
V (x1, x2) is indicated by the color bar on the right of the diagram. Left: Sym-
metric double potential well with z1,2 = 1.5, compare Fig. 2.6. Right: General 2-
dimensional potential well with two minima using the zs

1,2(∆x) shaping functions,
defined by (B.3), with a1 = 0.3 and a2 = 0.6.

B.2 Bifurcations in the 4-dimensional system
As discussed in Sec. 2.2, the fixpoints p∗1,2 = (±1,∓1, 0, 0) of the prototype sys-
tem, corresponding to the minima of the symmetric double-well potential shown in
Fig. 2.6, undergo supercritical Hopf bifurcations as the control parameter changes
sign at µ1 = 0. Due to the symmetry of the system, the Hopf points are character-
ized (see Sec. 2.4) by a double pair of purely imaginary eigenvalues,

λ1,2,3,4 = ±i√γ , γ =
∂2V

∂x2
1,2

∣∣∣∣
x∗1,x

∗
2

, (B.5)

which allow for the creation of a second set of limit cycles, additionally to the ones
presented in Fig. 2.8.

These limit cycles are unstable, see the left plot of Fig. B.2 for almost the entire
parameter interval investigated here, also having a perpendicular alignment with
respect to the ones presented in the main text (see the right plot). We note, how-
ever, that the intermittent chaotic dynamics shown in Fig. 2.9 is organized partly by
this second branch of unstable limit cycles. For µ1 = 0.34 the limit cycles are hy-
perbolic, having two stable and one unstable directions. The trajectories are hence
transiently attracted to these unstable cycles (which are embedded to the chaotic
attractor), generating the bursting dynamics perpendicular to the (1,-1) symmetry
axis of the potential function (compare Fig. 2.9).
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Figure B.2: The second branch of limit cycles of the 4-dimensional prototype sys-
tem with the symmetrical double-well potential (with parameters as for Fig. 2.7).
Left: The bifurcation diagram showing only the fixpoints and the second branch of
limit cycles (compare Fig. 2.8). Stable/unstable fixpoints are indicated by the black
continuous/dashed lines. Maximal/minimal x1-values of the respective limit cycles
are illustrated by the red/green dashed lines. The limit cycles are mostly unstable,
except for the orange shaded parameter interval after the supercritical Hopf bifur-
cations H1,2. Intermittent chaos (see Fig. 2.9) was found for µint

1 = 0.34, indicated
by the arrow in the top right corner. Right: Projection of the limit cycles to the
(x1, x2) plane for µ1 = 0.008 (from the orange shaded region in the left). The
minima of the double-well potential function V (x1, x2) are color-coded.

Figure B.3: Computation of the largest Lyapunov exponent λm. The logarithmic
distance 〈ln |x1(t)−x2(t)|〉 is shown as a function of time, averaged over 100 pairs
of trajectories x1,2(t). The maximal Lyapunov exponents λm = −0.01 / 0 / 0.08
are determined by the slope of the linear fits (brown lines) to the first part
of the black/green/red trajectories, respectively. The control parameter values
µ1 = −0.05/0.2/0.3 correspond to fixpoint/limit-cycle/chaotic attractors (compare
Fig. 2.8). The dashed line indicates that the maximal accuracy of the integrator has
been reached.
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B.3 Lyapunov exponent
In this section we discuss the computation of the maximal Lyapunov exponent λm

for the 4-dimensional prototype system with the double-well potential function
discussed in Sec. 2.3.2 of Chapter 2.

The determine the largest Lyapunov exponent λm (plotted in Fig. 2.8) we follow
the method described in Sec. 1.1.3. For every value of the control parameter µ1

first we let the trajectory converge to the attractor by discarding the transients cor-
responding to the first ttr = 1.5 · 104 time units. The Lyapunov exponent λm is then
given by the slope of the initial linear part of the logarithmic distance,

〈ln |x1(t)− x2(t)|〉 ≈ λmt+ ln δ12 , (B.6)

averaged over 100 pairs of trajectories x1,2(t) on the attractor of initial distance
δ12 = |x1(0)− x2(0)| = 10−8. The initial slope of the logarithmic displacements is
indicated in Fig. B.3) for three different control parameters µ1, corresponding to a
fixpoint, to a limit-cycle and to a chaotic attractor, respectively.



Appendix C

Neural networks

C.1 Chaotic dynamics in the symmetric network
In Sec. 3.2.2 of Chapter 3 we have discussed the bifurcations leading to the
transient-state dynamics. The bifurcation diagram as a function of the input strength
I shown in Fig. 3.6 indicates a region with chaotic behavior. Inspecting the time-
series corresponding to this chaotic behavior, as plotted in Fig. C.1, we find oscil-
lations around the destabilized clique state. These unstable fixpoints are of saddle-
focus type, i. e. the Jacobian matrix has a pair of complex eigenvalues with positive
real parts, while the other eigenvalues being either negative or complex with nega-
tive real parts. The trajectory revisits these fixpoints, producing small amplitude os-
cillations around them. To check whether a heteroclinic contour [47] (cf. Sec. 1.1.5)
also exists due to the C4 symmetry, needs further investigations. Also note that the
chaotic dynamics is intermittent, the small amplitude oscillations are interceded by
the sequential switching behavior (cf. Fig. 3.4), which is, however, not stable here.

0 20 40 60 80 100

t[s]

1

0

y

y0

y1

y2

y3

Figure C.1: The time-series of firing-rates yi showing intermittent chaotic-like
transient-state dynamics for the N = 4 neuron network (see Fig. 3.3) and input
current I = −6.8 Hz. The other parameters are as for Fig. 3.4.
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Appendix D

Robots

The simulation parameters used for the barrel robot in Sec. 4.2.1, respectively for
the spherical robot in Sec. 4.3 of Chapter 4 are summarized in the following two
tables, indicating: the parameter name employed in the text / the name of the C++
variable in the LpzRobots simulation environment / the notation used in the the-
sis / their values or the parameter ranges / the units of measure in the International
System of Units in the first / second / third / fourth / last columns, respectively.

D.1 Simulation parameters of the barrel robot
Parameter name LpzRobots var. Symbol Value Unit
slope of y(x) a a [1.2, 2] -
adaption rate eps ε [0, 1] -
normalized spring const. - Ω

√
200 1/s

normalized damping - β 2Ω 1/s
mass of the small ball pendularmass m 1 1 kg
spring constant motorpowerfactor k 200 1 kg/s2

damping - γ 2
√
km 1 kg/s

mass of the barrel spheremass M 1 1 kg
diameter of the barrel diameter 2R 2 1 m
rolling friction coeff. friction Ψ 0.3 1 m2 kg/s
gravitational acceleration gravity g 9.81 1 m/s2

simulation stepsize simstepsize dt 0.001 1 s
- noise - 0 -
- controlinterval - 1 -
- pendularrange - 0.5 -
- roughness - 0.8 -
- hardness - 40 -
- slip - 0.01 -
- elasticity - 0.5 -
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D.2 Simulation parameters of the spherical robot

Parameter name LpzRobots var. Symbol Value Unit
gain a a 0.4 -
threshold b b 0 -
leak constant gamma Γ 20 1 s
excitatory weight w_0 w0 [120, 300] 1 Hz
inhibitory weight z_0 z0 [50, 800] 1 Hz
calcium time constant T_u Tu 0.3 1 s
neurotr. time constant T_phi Tϕ 0.6 1 s
calcium limit U_max Umax {1, 4} -
mass of the small balls pendularmass m 1 1 kg
spring constant motorpowerfactor k 120 1 kg/s2

damping - γ 2
√
km 1 kg/s

mass of the sphere spheremass M 1 1 kg
diameter of the sphere diameter 2R 0.5 1 m
scaling factor r 2p 1 -
rolling friction coeff. friction Ψ 0.3 1 m2 kg/s
gravitational acceleration gravity g 9.81 1 m/s2

simulation stepsize simstepsize dt 0.001 1 s
- noise - 0 -
- controlinterval - 1 -
- pendularrange - 0.5 -
- roughness - 0.8 -
- hardness - 40 -
- slip - 0.01 -
- elasticity - 0.5 -

The simulations can be reproduced by using the LpzRobots simulation software,
available on http://robot.informatik.uni-leipzig.de/software
or https://github.com/georgmartius/lpzrobots.

http://robot.informatik.uni-leipzig.de/software
https://github.com/georgmartius/lpzrobots
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D.3 Stability of the motion primitives
Here, we examine the stability of the rolling modes of the sphere robot, shown in
Figs. 4.10 and 4.11, in the presence of sensory noise. We find that all attractors are
resistant to relatively high noise levels (see Fig. D.1), the less stable ones being the
T1 and S3 modes, which are characterized by the smallest stability domains in the
(w0, z0) parameter space.
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Figure D.1: The stability of the locomotion modes found for Umax = 1, compare
Fig. 4.10. The mode stability is indicated simply in a binary manner (denoting with
0 the unstable behavior) as a function of the noise term ∆x in the sensory reading
of the actual positions, defined by x(a)

i → x
(a)
i (1 + ∆x). The noise ∆x is normal-

distributed with standard deviation σ.
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