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Chapter Five

Continuous Time Models

The purpose of computing is insight, not numbers. Richard
Hamming

We study models for continuous systems which can be expressed using
ordinary differential equations. We cover interesting models in dimensions
one and two, but also higher-dimensional problems that involve differentiat-
ing arrays. We introduce powerful graphic and numeric tools embedded in
EJS, and study new visualizations such as direction fields and phase-space
plots.

5.1 THE COOLING COFFEE PROBLEM

Figure 5.1: Comparison of Newton’s law of proportional cooling with exper-
imental data of the cooling of a cup of black coffee (top plot) and of coffee
with cream. The model data (continuous line) fits well with the experimen-
tal data (square marks). Project 5.1 shows how to read an experimental
data file.

You are about to give a short presentation of your latest computer
simulation to your professor when two freshly brewed cups of coffee arrive.
You both decide to wait until the end of the presentation (5 minutes) to
drink your coffees but your professor immediately adds some cream to her
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coffee while you wait until the end of your presentation. Your presentation
went well but you wonder who will drink a hotter coffee. Curiosity is a basic
ingredient of science and asking what, why, and how things happen leads to
a deeper understanding of how nature works. Your question makes a perfect
case for modeling, the central theme of this book.

In 1958 two Cornell University engineering students presented a re-
port title “The Mechanisms of Cooling Hot Quiescent Liquids” in which
they studied the effect of adding cream to a cup of hot coffee. Because typi-
cal brewing temperature for coffee is 85C (185F) and drinking temperature
is 62C (143F), they studied the effect of adding cream when the coffee is
served or adding it just before it is consumed. This is not a trivial prob-
lem because a hot body exchanges heat with its surroundings through the
simultaneous processes of conduction, convection, evaporation, and radia-
tion. Newton argued that since the thermal energy is proportional to the
volume and the energy loss is proportional to the exposed area, the time
of cooling is proportional to the diameter. Larger objects therefore cool
more slowly. Laplace, Helmholtz, and Kelvin extended Newton’s model by
considering gravitational energy and radiation to estimate the age of the
Sun to be well over 20 million years. Although the discovery of nuclear
fusion greatly increased this age estimate, the balance between cooling and
thermonuclear fusion is of fundamental importance in stellar models. Today
we use advanced heating, cooling, and energy transport models to debate
the impact of global warming. Considering in detail the processes in these
climate change models requires advanced supercomputer-based algorithms
and is beyond the scope of this text. We wish to lay the groundwork for
such studies and we start by studying the cooling-coffee problem. We create
a simple model of how objects cool and implement this model using different
numerical algorithms. We then use this simulation with different conditions
to predict the final temperature.

If the temperature difference between an object and its surroundings
is not too large, Newton’s law of proportional cooling states that the rate
of change of the liquid temperature is proportional to that difference. This
relationship can be expressed in mathematical form using the ordinary dif-
ferential equation

Ṫ (t) = −k(T (t)− Tr). (5.1.1)

where T (t) is the temperature of the liquid at time t and the dot on top
of it to the left of the equal sign indicates its derivative with respect to
time, i.e. Ṫ (t) = d T (t)

dt . The reference temperature of the surroundings Tr

is assumed to remain constant in our simple model. Finally, k is a constant
that depends on several factors, such as the geometry of the problem (a
bigger surface of contact between liquid and air favors faster cooling), the
mass of the liquid, and the particular liquid considered (its specific heat).
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Newton’s law of proportional cooling is not a fundamental law, but
an empirical relationships that works well in practice, and is an example of
a continuous time model. Continuous time models are those in which time
is considered to flow uniformly causing the state variables of the system
(in our problem, the temperature of the liquid) to change. In this chapter
we describe continuous time models which can be modeled using ordinary
differential equations (ODEs). Our expectation is to be able to ascertain
the evolution in time of the temperature of the liquid from equation (5.1.1)
and the knowledge of its initial temperature (the initial conditions).

Exercise 5.1.
If you have studied calculus, show that

T (t) = Tr + (T0 − Tr)e−k(t−t0) (5.1.2)

is the solution of (5.1.1) and therefore provides the desired evolution of
the temperature in time where T0 is the temperature at time t = t0. You
can substitute (5.1.2) into (5.1.1) but you can also derive the solution by
separating the variables in the differential equation and integrating. 2

Simulating a continuous time model for which we know an explicit
analytic solution, such as our cooling problem, is relatively easy. We select
a sequence of successive time instants t0 < t1 < t2 < . . ., and compute
and display the state at these instants using the explicit solution. In other
words, we reformulate the continuous model as a discrete model but the
time intervals can be made arbitrarily small. Discrete models for which the
time interval cannot be made arbitrarily small are discussed in Chapter 6.

The Cooling Coffee model declares the page of variables shown in
Figure 5.2. We set k = 0.6, T0 = 90, and Tr = 22 and we simulate the
model from t = 0 to t = 5. Temperature is measured in Celsius degrees and
time is measured in minutes. (What are the units for k?) We have chosen
a fixed discretization step dt of 0.1 minutes to compute the temperature of
the coffee at equally spaced instants of time tk = t0 + k dt.

Enter the following code in the Evolution workpanel.

t += dt; // Increment the time

if (t>=tMax) _pause(); // stop if maximum time is exceeded

The Constraints workpanel contains a code page with the closed-form
solution (5.1.2) of the differential equation.

T = Tr + (T0-Tr)*Math.exp(-k*t); // closed-form solution
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Figure 5.2: Table of variables for the cooling coffee problem.

The view is simple and consists of a plotting panel with traces for the
reference temperature and for the temperature of the liquid. Running the
simulation produces an exponentially decreasing curve as seen in Figure 5.3.

Figure 5.3: Typical exponentially decreasing temperature for Newton’s law
of proportional cooling.

The fields to the right bottom of the user interface display the param-
eters of the model and their actions initialize the system so that you can
compare different responses.

To compare different responses, you can capture a snapshot of the view for
each set of parameters. Right-click on an empty area of the plotting panel
to bring in its popup menu. Select from this menu the option “Capture the
screen > Snapshot” and save the resulting graphic file. The plotting panel’s
Print Target property has been configured so that this menu option captures
the contents of the mainFrame element.

Exercise 5.2.
Add a button to the view with an action that adds cream to the coffee. If
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the amount of time it takes to add the cream is small, the temperature of
the coffee-cream mixture T ′ can be computed by assuming that heat lost
by the coffee ∆Q− = Mc(T ′ − T ) is equal to the heat gained by the cream
∆Q+ = Mc(T ′ − Tc). Assume that cream is served at Tc = 5C (41F) and
that the heat capacity c of coffee is approximately that of cream. Setting
Q+ = −Q− and solving for the final temperature T ′ gives a simple equation

T ′ =
MT + mTc

M + m
(5.1.3)

where M ≈ 250 grams is the mass of coffee and m ≈ 25 grams is the mass
of cream. 2

Not all ODE problems have such a simple solution. The well-developed
theory of ordinary differential equations states that, under reasonable con-
ditions on the differentiability of the expressions involved, ODEs have a
unique solution for realizable initial conditions. But asserting the existence
of a solution and actually finding it are different things! Except in a few
happy cases (see for instance [?]), ODEs are difficult or even impossible to
solve analytically. For example, the ODE

ẋ = 3x sinx + t, (5.1.4)

has no known explicit solution.1 In cases such as this, we must resort to
numerical or graphical techniques to approximate the solutions of the equa-
tions to the required level of accuracy.

When computing a particular solution of an ordinary differential equa-
tion we must also providing an initial condition for the state at time t0,

x(t0) = x0. (5.1.5)

An initial condition together with a corresponding differential equation is
known as an initial value problem. Many numerical algorithms for solving
initial value problems exist and which one to use for a given problem depends
on both the cost of the computation and on the nature of the problem itself.
In the following sections we describe simple methods for continuous time
models which can be described by systems of ordinary differential equations
of the form

ẋ(t) = f(x(t), t). (5.1.6)

We use vector notation (indicated by the use of bold font) for the state of
the model x = {x1, x2 · · ·xn} in order to cover, later in the chapter, higher-
dimensional problems. The dimension of the problem is that of the state
vector. The vector function f = {f1, f2 · · · fn} expresses the rate of change
of the state as n functions of time and the state itself. A special, and very

1We will frequently follow the custom of omitting the explicit dependence on t of the state
variable x.
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important type of differential equation is that of autonomous systems, in
which f has no explicit dependence on time. Autonomous systems, also
called dynamical systems, appear frequently in the description of continuous
physical processes, such as the cooling coffee problem described above. We
discuss the properties of these special systems in Section 5.9.

5.2 EULER METHOD

(a) Euler method and exact solutions.

(b) Zoom of a portion of the graph.

Figure 5.4: Comparison of numerical and exact solutions of the cooling
coffee problem for k = 0.6, T0 = 90, and Tr = 22 in the first five minutes.
The solution computed using Euler method (the lower trace) approximates
but does not match exactly the analytic solution. The right image shows a
zoomed portion of the graphs.

The standard approach to finding the numeric solution of an initial
value problem is that of difference methods. In them, we discretize the
independent variable (usually the time) and try to compute, if only approx-
imately, the value of the state at a time t0 + ∆t, for some ∆t > 0 where ∆t
is called the step size. The simplest such method uses the first two terms of
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the Taylor expansion of the solution:

x(t0 + ∆t) = x(t0) + ∆t ẋ(t0) +
(∆t)2

2!
ẍ(t0) + . . . (5.2.1)

and the fact that ẋ(t0) = f(x(t0), t0), to obtain a first approximation, x1,
of x(t0 + ∆t):

x1 = x0 + ∆t f(x0, t0). (5.2.2)

To simulate the evolution of our model, we iterate algorithm (5.2.2) to ad-
vance repeatedly the state of the model in time. This algorithm, known
as Euler’s method, was first considered by Leonhard Euler in the XVIII
century. 2

The CoolingCoffeeEuler model extends our previous CoolingCof-
fee model by using Euler’s method to compute a numerical approximation
of the solution. The model defines a new trace in order to display a new
variable called Teuler, which is initialized to T0. The code in the Evolution
workpanel is now:

Teuler = Teuler - dt*k*(Teuler-Tr); // Euler approximation

t += dt; // increments time

if (t>=tMax) _pause(); // stops if maximum time is exceeded

When the evolution executes this code, the model steps from the current
state Teuler at time t, to the new state at t+dt given by the new value
of Teuler. The analytic solution is computed using constraints exactly as
before.

If we plot the solution of the system in the range [0, 5] computed with
a value of 0.25 for the step size, dt, together with the analytic solution, we
see (left plot of Figure 5.4) how the solution provided by Euler’s method
closely approximates the analytical solution. However, if we zoom in the
picture (right image of Figure 5.4) we observe a small discrepancy of about
1.8 degrees in the central part of the plot.

To zoom the picture, right-click within the plotting panel, select the plot-
ting panel the Elements options from the popup menu, and navigate to the
submenu “Plotting Panel> Zoom > Zoom in”. Then, click an drag with the
left button of the mouse to select the rectangle of the plane to zoom. You
can also compare the numerical data of both traces. To obtain the data of
a trace in tabular form, select the element options for a trace and navigate
to the “Show data in table” submenu. Compare the entries for both traces
around t = 2.5.

2Euler was born in Basel, Switzerland in 1707 and died in St. Petersburgh, Russia in 1783.
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Euler’s method does not provide the exact value of the solution at
t0 + ∆t, but an approximation to it. It can be proved that, if ∆t is small
enough, the approximation can be made as accurate as desired. There is,
however, a computational limit to the accuracy because of the finite precision
of computer arithmetic. In addition, a smaller value of ∆t requires more
steps to advance the evolution of the system through a unit time interval.
Hence, accuracy comes at the price of additional computation.

Exercise 5.3.
Run the CoolingCoffeeEuler model with dt=0.25 and with dt=0.025 and
record the maximum difference between the analytical and numerical results.
By how much does the error decrease? Note that the simulation also runs
more slowly. This additional time is due both to the increased number of
computations and data points stored in the trace which is displayed in the
plotting panel. You can remove this second problem by using the inspector
to set the Skip property of the traces to 10 so that only one out of every ten
points is stored. 2

A straightforward theoretical analysis shows that the total (global)
error produced by Euler’s method decreases linearly with ∆t when advancing
the model from tinital to tfinal. Euler’s method is therefore termed a method
of order one. A numerical method that reduces the total error quadratically
with ∆t is said to be second order. In general, the order of a method
is the power-law relationship between the time step and total error. For
example, EJS has an eighth-order method that reduces the error by a factor
of 256 = 28 when the time step is reduced by a factor of two. Although
Euler’s method is not used in actual computations (because it produces a
poor approximation, unless ∆t is prohibitively small), it is taught all around
the world for its simplicity and because it paves the way for further, more
sophisticated algorithms.

5.3 ONE STEP METHODS AND THE ODE EDITOR

There are several ways of improving the accuracy of Euler’s method. In
Exercise 5.4 we outline one possible method that uses more terms of the
Taylor expansion of the solution.

Exercise 5.4.
Modify the evolution code of CoolingCoffeeEuler to add the third term

on the right of equation (5.2.1), i.e. (∆t)2

2! T̈ (t0). The second derivative of T

can be computed by differentiating the original relationship Ṫ = −k(T−Tr).
Check that running the improved model with a value of dt = 0.25 produces
results comparable to that of the Euler method with dt = 0.025 with no
appreciable loss of speed. This method is called the three-terms Taylor
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method and is a second-order method because the error on a unit interval
decreases quadratically with ∆t. 2

Although one can create more accurate numerical methods by taking
subsequent terms in the Taylor expansion, the derivatives involved become
more and more complicated and error-prone. Moreover, the differentiation
and coding effort done for one problem can not be reused for a different
ODE. Over the years, mathematicians looked for numerical methods of order
higher than one that only require the evaluation of the rate function f , and
are therefore easy to reuse. Among the most popular and easy to implement
for simulation purposes are the so-called one step methods. These methods
evaluate the rate function at multiple points in the interval [t0, t0 + ∆t] and
then combine the results to provide a good approximation of the solution at
t0 + ∆t . Although a better approximation requires more evaluations of the
rate function for a single step, the extra computations pay off because the
higher accuracy implies that the step size ∆t can be increased, sometimes
dramatically, reducing the total number of computations in a given inter-
val of time [tinital, tfinal]. We describe some of the most popular one step
methods in the appendix at the end of this chapter on numerical methods.

Writing a simple, fixed step size implementation of some of these meth-
ods is not too difficult. However, numerical methods reach their maximum
efficiency only when implemented using advanced numerical techniques that
involve automatically estimating the error, adapting (changing) the step
size, and interpolating the resulting points to produce the final state. In
order to make it easy to use such advanced solution algorithms, EJS has
a built-in ODE editor that allows you to enter the differential equations in
a natural form and select the numerical method desired. Easy Java Simu-
lations automatically creates Java code that uses the Open Source Physics
library [?] to solve the equations. We now illustrate how to use the editor to
implement a variation of the cooling coffee problem with changing outside
temperature.

The CoolingCoffeeEditor simulation uses the ODE editor in the
Evolution workpanel to implement the model of a liquid that cools in a
changing outside temperature Tr(t),

Ṫ (t) = −k(T (t)− Tr(t)). (5.3.1)

Although the resulting differential equation is linear, finding the solution
requires computing an integral which may not be analytically solvable, de-
pending on the complexity of the function Tr(t). We must therefore resort
to a numeric method.

Figure 5.5 shows how equation (5.3.1) is entered into the ODE editor.
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Figure 5.5: The ODE editor of EJS used to specify the equation of the
cooling coffee problem with variable reference temperature. The rate of the
state variable T on the left column is computed using the formula on the
right column. Tr() is a method declared in the Custom panel of the model.

The Independent Variable property at the top of the panel is used to specify
the independent variable of the differential equation. This variable can be
any continuous variable but is often the time as in the current model. The
Increment property specifies the step size of our discretization. The central
part of the editor contains a table showing the formula that computes the
rate of each of the state variables. To enter a differential equation, we
double-click on the left column and type the corresponding state variable
(T in our problem). The editor then shows the rate in the familiar dT

d t form.
Alternatively, right-clicking on the state cell allows us to select the state
from the list of model variables of double type. The rate is specified by
double-clicking in the right column and typing the Java expression required
for the computation. In our case, the code is -k*(T-Tr(t)), where Tr is
now a method (function) defined in the Custom workpanel of the model with
the code:

public double Tr (double time) {

return 22.0 + 10.0*Math.sin(time*Math.PI); // periodic fluctuations

}

Notice that, although time is a global variable t, the t variable in the
ODE editor is a local variable with possibly different values. Numerical
methods compute rates at different (intermediate) instants of time in order
to achieve better precision. For example, the fourth order Runge–Kutta
method evaluates the rate four times when advancing the system from t0 to
t0 + ∆t. Because the state variables in an ODE editor are not the global
variables with the same name, it is crucial to follow the rule of passing the
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ODE editor’s state variables as parameters to methods in the rate column
of the editor.

Finally, the lower part of the ODE editor allows us to select one of
the one-step methods available in EJS to solve the problem. The classical
fourth-order Runge–Kutta method chosen for this example provides an al-
most perfect match with the correct solution even for large values of the
step size.

If the method selected uses an adaptive algorithm, a field will appear allowing
us to enter the tolerance (or maximum local error) desired for the computa-
tion. The method will then use smaller internal step sizes, if needed, to make
sure that each step has an error smaller than the tolerance. A detailed expla-
nation of how adaptive methods work is provided in the appendix at the end
of this chapter. The Events button is used for problems with discontinuities
in the equation and is discussed in Chapter 7.

Solving a given ODE with different methods and values of the step
size is always recommended. The number of different algorithms used to-
day accounts for the fact that no method is superior in all circumstances.
Selecting an appropriate step size can help us obtain an accurate solution
without wasting computer power and one of the big advantages of the ODE
editor in EJS is that it makes this experimentation very easy.

Exercise 5.5.
Run the CoolingCoffeeEditor model for a constant outside temperature
(i.e. Tr(t) = 22.0 for all t) with different step sizes and compare the solution
obtained with the analytic one. See how large can dt be for a Runge–
Kutta method. Check the order of the Runge–Kutta method to be four by
computing how the error decreases with dt. 2

Exercise 5.6.
Model the temperature of an object that is periodically heated and cooled

in a discontinuous manner. Assume that the heating-cooling cycles has a
frequency f .

public double Tr (double time) {

if(Math.sin(2*Math.PI*frequency*time)<0){

return 22.0 + 10.0;

}else{

return 22.0 - 10.0;

}

}

A discontinuous Tr(t) function can confuse a numerical ODE algorithm. Are
some algorithms more successful than others in handling discontinuities? 2
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5.4 ODE FLOW AND DIRECTION FIELDS

Figure 5.6: Evolution of a continuous time model for population growth.
The variable which represents the population (in normalized units) changes
continuously in time with a rate which depends on its current value and on
the value of the parameters r = 1 and K = 10. The system reaches 99% of
its carrying capacity after approximately 8 time units.

Differential equations are frequently used in biology to model popula-
tion dynamics. A very simple model of the evolution of the population N
states that the species will reproduce according to the Malthusian law

Ṅ = rN, (5.4.1)

where the growth rate r is a given positive parameter. Equation (5.5.1) can
be easily solved to show an exponential increase of the population which
would soon drive the species into overpopulation problems unless there
is infinite food and space. More sophisticated models predict exponential
growth for small populations but include an overcrowding term that limits
the growth of the population due to decease and the scarcity of resources.
The logistic model for a population N (expressed in suitable units) predicts
this behavior and be written as

Ṅ = rN − r

K
N2 or Ṅ = rN(1− N

K
) (5.4.2)

where population N(t) is a continuous function of time, r > 0 is the growth
rate for small populations, and K > 0 is the ecosystem’s carrying capacity.
Figure 5.6 shows that the carrying capacity is reached, starting from an
initial value of 0.5, after approximately eight time units if r = 1.00.

Although the solution for an initial value problem, such as the logistic
equation, with a particular set of initial conditions is useful, we often wish to
understand the qualitative behavior of all the possible solutions of a differ-
ential equation. Even if we have an analytic solution, it may be complicated
and it may be unclear how the solution depends on the initial conditions.
A better approach is to study the rate of change (flow) as a function of the
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Figure 5.7: The one-dimensional phase space flow of the logistic equation.

state variables. The Ode1DFlow model implements this visualization for
a single ordinary differential equation of the form

ẋ = f(x) . (5.4.3)

The ODE 1D Flow rate graph (Figure 5.7) shows the logistic function
f(x) = 0.1x(1 − x/10) using the generic x to represent the population.
(What is the value of K?) The graph contains a draggable red circle that
represents the current value of x and has an arrow that shows the direction
of ẋ. If the rate is positive, the arrow is to right; if negative, the arrow is to
the left. This arrow introduces us to phase space flow, a concept that allows
us to study the geometry of a differential equation. The time development
graph (see Figure 5.6) displays particular solutions x(t) when the model is
run.

Exercise 5.7.
Load the one-dimensional ODE flow model into EJS and run the default

(logistic) simulation. Stop the time evolution, drag the red circle past the
carrying capacity K = 10, and restart the time evolution and compare the
two solutions. Can the circle ever move past the carrying capacity? What
information that is available in the solution plot is missing from the rate
plot? 2

Points where f(x) = 0 are called fixed points or equilibrium points
because the rate of change is zero and the value of x remains constant.
Figure 5.7 shows that the logistic equation has two fixed points. The fixed
point at x = 0 is an unstable fixed point because solutions in its vicinity
always move (flow) away from it. The fixed point at the carrying capacity
x = K is a stable fixed point because solutions in its vicinity move (flow)
toward it.
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Exercise 5.8.
Use the one-dimensional ODE flow model to identify and classify the fixed
points for ẋ = sinx on the interval [−4π, 4π]. 2

Exercise 5.9.
Use the one-dimensional ODE flow model to identify and classify the fixed
points for ẋ = x− x3 on the interval [−1.5, 1.5]. 2

Figure 5.8: A grid of small line segments showing the direction field of the
ODE ẋ = 3x sinx+ t in the range [−6, 3]× [−2, 4]. Multiple solution curves
have been computed and superimposed on the field.

A graphical technique which is commonly used for one-dimensional
equations with rate function f(x, t) that also depends on time (non-autonomous
ODE) is that of plotting the direction field of the ODE. This visualization
consists of drawing a grid of line segments in the (t, x) solution plane. Each
segment has a constant length and a slope given by f(x, t). Since the solu-
tion curve obeys ẋ(t) = f(x(t), t), the curve must be tangent to these line
segments at each of the field’s grid points. When the grid is refined, the
qualitative behavior of the solution curve can frequently (but not always)
be sketched. Figure 5.8 shows the direction field and a collection of solution
curves for the ODE ẋ = 3x sinx + t in the [−6, 3]× [−2, 4] solution plane.

The DirectionFieldPlotter model shows the direction field repre-
sentation of a differential equation by superimposing ODE trajectories on
an analytic vector field with components (1, f(x(t), t). The line segments
show the ODE rate of change and the nt and nx indexes indicate the number
of grid points in the t and x directions. The visualization uses a fixed color
map with constant length line segments as described in Section 3.8. Trace
elements are used to plot the solution curves.
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Contrary to the usual way of starting the evolution using a button
action, this model’s evolution is started using a mouse action. Every point
within the plotting panel is a possible initial conditional for the differential
equation and the model generates the solution curve that passes through
a point when the user clicks on that point within the panel. In order to
show the complete solution, uses separate differential equations to advanc-
ing forward and backward in time from the starting time t0. Forward and
backward solutions are recorded in the solutionForward and solution-
Backward Trace elements.

ẋf (t) = f(x, t0 + t) (forward)
ẋb(t) = −f(x, t0 − t) (backward)

(5.4.4)

Note that the independent parameter t is set to zero at the start of the
evolution and that this value must be added and subtracted from t0 to
generate the forward and backward solutions, respectively.

The plotting panel’s On Release action executes code that controls the
animation by invoking the following custom method:

public void compute_solution() {

// return if not left-clicking so as not to interfere with pop-up menu

if (_view.plottingPanel.getMouseButton()!=_EjsConstants.LEFT_MOUSE_BUTTON) return;

_pause(); // stop the animation

t = 0; // reset the animation time

t0 = _view.plottingPanel.getMouseX(); // get initial t

xf = xb = _view.plottingPanel.getMouseY(); // get initial x

_view.solutionForward.moveToPoint(t0+t,xf); // add first point to forward trace

_view.solutionBackward.moveToPoint(t0-t,xb);// add first point to backward trace

_play(); // start the animation

}

We use the getMouseButton() method to identify the mouse button that
was released so as not to interfere with the plotting panel’s pop-up menu. If
the left button is pressed, the code stops the animation and reads the mouse
coordinates to initialize the model’s state variables. The code then adds
initial values to the Trace elements that record the forward and backward
solutions and starts the animation. The Evolution workpanel advances the
both xf and xb. The evolution is stopped if the solution can no longer be
seen within the plotting panel using a constraint that performs the following
bounds check.

if(((t0+t>tmax)||(xf>xmax)||(xf<xmin)) && // forward outside bounds

((t0-t<tmin)||(xb>xmax)||(xb<xmin))) // backward outsize bounds

_pause(); // stop if both solutions are out of bounds
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The Direction Field model is a good example of how to start and
stop the evolution from within a model and we encourage you to study it
carefully.

Exercise 5.10.
Predict (sketch the direction field for logistic model. Pay particular attention
to the direction field at the fixed points. Test your prediction using the
DirectionFieldPlotter model. The logistic model is autonomous. How
does this affect the direction field? 2

Exercise 5.11.
Use the DirectionField simulation to draw the direction fields for the

following ODEs in the given regions of the plane. Sketch the solution curves
before clicking within the simulation to compute the solution.

• ẋ = −k(x − Tr), for k = 0.03 and Tr = 22 in [0, 5] × [10, 90]. (The
cooling coffee problem.)

• ẋ = (1− t)x− t, in [−2, 4]× [−4, 2].

• ẋ = (x− 3)(x + 1)/(1 + x2), in [−5, 5]× [−3, 5].

• ẋ = −x cos t + sin t, in [−10, 10]× [−10, 10].

• ẋ = 3t2/(3x2 − 4), in [−2, 2]× [−2, 2].

2

The last equation in Exercise 5.11 shows that numeric methods are not
infallible. The solver fails to find the right solutions at the turning points
(as indicated by vertical field segments). The reason is that the ODE is
incorrectly defined for points in the vertical lines x = ±

√
4/3.

Exercise 5.12.
Change the solver of the ODE editor to the adaptive method Runge-Kutta-Fehlberg
5(4) and test it with the last of the equations in Exercise 5.11. See that the
EJS console prints an non-convergence warning when the trajectories reach
the line x = ±

√
4/3. Fixed step methods simply ignore the problem and

try to step forward at any cost (and provide wrong solutions). 2

5.5 PREDATOR AND PREY

Higher dimensional differential equations appear naturally in continuous
models of real-life processes. One of the nicest examples of a two-dimensional
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Figure 5.9: Typical oscillating behavior of the Lotka–Volterra model for the
predator (top plot) and prey system. The phase-space (right) plot clearly
shows that the oscillation repeats itself in time periodically.

model comes from the field of population dynamics in Biology: the Lotka–
Volterra model for predators and prey.

Suppose a population of a given species that lives in a region with
plenty of food. We again start with the Malthusian law for the evolution of
the number of individuals

ẋ = a x, (5.5.1)

where the growth rate a is a given positive parameter. Equation (5.5.1)
predicts an exponential increase of the population which would soon drive
the species into overpopulation problems unless there is infinite food and
space.

Notice that we are considering the population x to be a continuously varying
quantity, even when the number of individuals is certainly an integer. This
assumption is licit when the number of individuals is sufficiently high and we
re-scale the problem in a suitable way. For instance, x = 1 might actually
mean that there are one million individuals. A change of one individual can
then be considered approximately a continuous change in the model.

But populations rarely live in isolation. In particular, this species
shares its living space with a second species which predates on it. Without
predation, the number of individuals of the predator species y would follow
the rather discouraging dynamics given by equation

ẏ = −c y, (5.5.2)

for some constant c > 0. This dynamics will clearly soon drive the species
to extinction.

Predation changes the dynamics of both populations and can help
reach a sustainable ecological state. If we assume that both populations
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are constantly mixed in space, then predation takes place continuously and
turns the dynamics into a coupled two-dimensional system given by

ẋ = a x− b xy,

ẏ = −c y + d xy.
(5.5.3)

The positive constants b and d account for the predation rate of the encoun-
ters between individuals of both species, and the increase in the reproduction
rate of the predators produced by the nutritive value of the predation, re-
spectively. This system of ODEs is called the Lotka–Volterra model for
predators and prey.

Different examples of predator-prey systems have been considered in
real applications. Historically, the first Lotka–Volterra model was applied
by the Italian mathematician Vito Volterra 3 to explain why the percentage
of the catch of two different categories of fishes in the Mediterranean Sea
changed during World War I. The predator group of species were selachians
(sharks, skates, rays, . . . ) which prey on other, more desirable food fish
harvested by ships from the port of Fiume, Italy, during the years 1914–
1923. A very nice historical and theoretical note of this study can be found
in [?] and [?].

Creating a simulation that solves Lotka–Volterra’s equations is straight-
forward using the ODE editor in EJS. The LotkaVolterra simulation im-
plements equations (5.5.3) in the editor (see Figure 5.10) and solves them
to display the evolution of the populations in time.

Figure 5.10: Lotka–Volterra equations in the ODE editor of EJS.

The view of the simulation shown in Figure 5.9 follows a pattern al-
ready familiar to us and we do not discuss its implementation in detail.

3Vito Volterra was born in Ancona, Italy in 1860 and died in Rome in 1940. Alfred Lotka,
who devised the predator and prey model independently, was born in Lemberg, Austria–Hungary
(now L’viv, Ukraine) in 1880 from US parents, and died in New York, in 1949.
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Notice however that we are not displaying the solution curves of the sys-
tem. The solution would be a three-dimensional curve given by points of
the form (x, y, t). Instead, the left panel shows the component graphs of
the solution, given by points of the form (x(t), t) and (y(t), t), and the right
panel shows the trajectory of the solution in phase-space, given by points
of the form (x, y). This display is similar to what we did in the mass and
spring example of Chapter 2.

The component graphs provide information of how the population of
each species changes in time and is very close to how fishermen would an-
notate the populations of fish in a time register. We can see the alternate
extrema of both species. The ups an downs of the predators follow closely
those of the prey, as one would expect.

The phase-space (also called state-space) plot is a mathematical so-
phistication consisting in projecting the three-dimensional solution curve
into the plane span by the state coordinates. Although this projection looses
the time information (we cannot tell when the trajectory passes through a
given (x, y) point), it provides important information which is not easily
appreciated in the component graphs or the three-dimensional curve. For
instance, the right view of Figure 5.9 immediately suggests that trajecto-
ries are periodic, i.e. they repeat themselves periodically in time. Volterra
proved mathematically that all phase-space trajectories of equations (5.5.3)
are periodic. The period of the trajectories, i.e. the minimum time for which
they repeat themselves, varies slightly depending on the trajectory. The
sole exceptions are the trajectories that start at points (0, 0) and (c/d, a/b),
which are constant. Constant trajectories are known as equilibrium solutions
or stationary states.

Additional information can be obtained from phase-space plots for
autonomous systems. (The Lotka–Volterra model is an autonomous system
because the rates of x and y do not depend on time.) Trajectories in phase-
space of autonomous systems can’t cross each other, which limits the kind
of possible behavior for trajectories. Also, if a trajectory of an autonomous
system passes twice through a given point, it becomes periodic. Autonomous
systems are discussed in more detail in Section ??.

Exercise 5.13. Volterra’s law of averages.
Volterra also proved analytically that, despite having different periods, the
average predator population over a period is precisely c/d and the average
of the prey population a/b. The averages are given by the integrals

x =
1
T

∫ T

0
x(t) dt, y =

1
T

∫ T

0
y(t) dt, (5.5.4)
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where T is the period of the particular trajectory considered. Show this fact
by computing numerically this average. [Hint: Modify simulation Lotka-
Volterra so that, given initial conditions (x0, y0), it counts the accumulated
population (times the step size) at each integration step until the trajectory
passes again the line y = y0 from below. Divide then the counter by the
time elapsed and compare to the value predicted by Volterra.] 2

Exercise 5.14. Sensitivity to initial conditions in modified Lotka–
Volterra systems
Suppose the reproduction rate of the prey undergoes periodic changes (ac-
cording to seasons, say). Change the system so that a = a1 + a2 ∗ cos(f t),
where a1 denotes a fixed rate and a2 and f define a periodic fluctuation.
Show that the system now can be very sensitive to initial conditions. Use for
instance a1 = 0.172, a2 = 0.25, and f = 0.3. Plot the trajectory with initial
conditions x0 = 0.46501, and y0 = 0.40811 until t = 800 and then compare
it with the trajectory which starts at the same x0 but with y0 = 0.40810
(a difference of only 10−5!). Sensitivity to initial conditions, together with
erratic behavior are footprints of chaos. 2

5.6 NEWTONIAN MECHANICS

Figure 5.11: Motion of an undamped, undriven simple pendulum. The
phase-space portrait on the right shows a collection of different trajectories.
The current trajectory is the lowest one in the phase-plane, in which the
pendulum whirls in one direction for ever.

A common source for higher-dimensional ordinary differential equa-
tions is the field of Newtonian mechanics. Newton’s Second Law states that
the acceleration of a point particle of mass m is related to the sum of all
forces acting on it, F, according to the relation

F = ma. (5.6.1)

If the total force F can be computed from the position x and velocity ẋ of the
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particle and the time t, equation (5.6.1) expresses a differential relationship
of the form

ẍ =
1
m

F(x, ˙x, t). (5.6.2)

This equation is a second order differential vector equation with the di-
mension of the position variable x. Second and higher order problems can be
converted into ordinary (first order) differential equations of the form (5.1.6)
introducing additional variables for the derivatives of the state vector. Thus,
equation (5.6.2) for a particle with coordinates x = (x1, x2, . . . , xn) can be
rewritten in the desired form by introducing a new state vector

x′ = (x1, v1, x2, v2, . . . , xn, vn) (5.6.3)

where vi = ẋi. Notice that this procedure doubles the dimension of the
state vector so we have twice as many differential equations to solve. But it
makes the problem accessible using the numerical methods for the solution
of first-order equations presented in this chapter.

We saw a first example of a mechanical system describing the motion
of a mass and spring in Chapter 2. That motion displayed the characteristics
of a linear oscillator. We consider now the simplest example of a non-linear
oscillator. A simple pendulum is a physical abstraction consisting of a point
mass m which oscillates at the end of a rigid massless rod of fixed length L.

Massless rods and point masses are abstractions that do not exist. However,
a dense small sphere at the end of a light thin rod is a good approximate for
the idealized pendulum.

When the pendulum is at rest, it will hang vertically from the pivot
point. When displaced from the vertical and released from rest (with no
initial velocity), the pendulum will oscillate in the plane which contains the
vertical line through the pivot point and the initial position. This restriction
converts a problem in space into a problem in the plane. Because of the
rigidity of the rod, the motion of the mass is restricted to a circumference.
Polar coordinates (r, θ) are therefore more appropriate for this problem than
the usual cartesian coordinates (x, y). The radial component r is fixed and
equal to the length of the rod L. The interesting dynamics is related to the
change of the angular coordinate θ.

Newton’s Law for planar rotation states that the angular acceleration
θ̈ of an object is proportional to the torque τ applied to that object,

τ = I θ̈. (5.6.4)

The constant of proportionality I is known as the moment of inertia and
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can be shown to be I = mL2 for a point mass that is at a distance L from
the point of rotation. Applying Newton’s Second Law for rotation to the
pendulum leads to the following second-order differential equation

θ̈ = −g

`
sin(θ). (5.6.5)

Following the procedure indicated above, we introduce the new vari-
able given by angular velocity ω = θ̇ to turn this second-order equation into
an equivalent first order system

θ̇ = ω

ω̇ = −g

`
sin(θ).

(5.6.6)

This is the first order system of ODEs for the (undamped, undriven) simple
pendulum. Additional terms must be introduced when the system includes
frictional or driving forces.

The SimplePendulum model implements equations (5.6.6) using the
ODE editor of EJS and shows the evolution of the pendulum using both
a realistic representation of the motion of the pendulum and a phase-space
diagram. The model declares three separate pages of variables for organiza-
tional reasons. See Figure 5.12.

Figure 5.12: Three different tables help organize the variables of the simple
pendulum model. Pages of variables are processed from left to right.

All variables in these tables have global visibility irrespective of the
page in which they have been declared. A single exception is that variables
can be used in the Value column of other variables only if they have been
declared earlier in the same table or in a previous page of variables. Pages
of variables are processed from left to right.

The ODE editor is used to state and solve the differential equations (5.6.6).
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Figure 5.12 shows we have chosen an adaptive algorithm with a tolerance of
10−5 to compute the solution.

Figure 5.13: First order system of differential equations equivalent to the
second order problem θ̈ = − g

L sin(θ).

Because the equations of motion are solved in polar coordinates, the
model includes a page of constraints with the following code to convert from
polar to cartesian coordinates.

x= L*Math.sin(theta);

y = -L*Math.cos(theta);

vx = omega*L*Math.cos(theta);

vy = omega*L*Math.sin(theta);

These cartesian coordinates are used to position the bob and its ve-
locity vector in the left plotting panel of Figure 5.11. This plotting panel
displays (for aesthetic reasons, mainly) polar axes according to the value
of its Axis Type property. The property inspector displayed in Figure 5.14
shows the location of the bob is given using the constrained x and y coordi-
nates.

The polar-cartesian dichotomy forces us to provide an action for the
view element which displays the bob. When the user drags the bob to a new
position, the action code computes the correct value of the theta angle.

theta = Math.atan2(x,-y);

// length is constant

omega = 0.0;

t = 0.0;

The Math.atan2(a,b) method computes the angle subtended by the given
coordinates in the [0, 2π] interval which is used as the new value of theta.
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Figure 5.14: Property inspector for the bob view element. Because its posi-
tion is given by cartesian coordinates, action code is required to update the
model polar coordinates.

The action code also resets the time and sets the angular velocity to zero
so that the motion starts from rest. Because L is not changed, constraints
(which will be called automatically by EJS after the action is executed) will
correct the values of the x and y coordinates so that the bob remains at the
correct distance from the pivot.

The right plotting panel of the view of this simulation is prepared
to display a phase-portrait of the simple pendulum. A phase-portrait is
a visualization of a moderately large collection of different trajectories in
phase-space, and provides a good deal of information of the qualitative be-
havior of the solutions of the system. The user can click on any point in
phase-space and obtain the trajectory through that point.

We have chosen to display the trajectories in the phase-portrait as
a collection of separate points, rather than using a connected trace. The
reason is that displaying a complete phase-portrait such as the one shown
in Figure 5.11 requires plotting a large number of points. Although a single
trace can also display several trajectories, too many points can make the
computer slower and even run out of memory. The DataRaster element
we used instead accepts individual points within prescribed minimum and
maximum coordinates and prepares an off-screen bitmap image which it
dumps to the screen when the view is refreshed. The memory usage is
minimal and the drawing very fast. Points are added to the data raster by
linking its X and Y properties with the values of theta and omega, as shown
in Figure 5.15.

We make the phase-space appear periodic in the angular dimension by
identifying points in the vertical sides of the rectangle through the peridoicAngle
custom method.

public double periodicAngle(double angle) {
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Figure 5.15: Property inspector for the data raster view element. The an-
gular (horizontal) coordinate is made periodic to identify the vertical sides
of the rectangle.

while (angle>THETA_MAX) angle -= 2*THETA_MAX;

while (angle<-THETA_MAX) angle += 2*THETA_MAX;

return angle;

}

The only disadvantage of this approach is that we will need to com-
pute many trajectory points, close to each other, to get the impression of a
continuous curve. For this reason, we have chosen a small increment of time,
0.01. But, because refreshing the screen (and, in general, graphic activities)
takes much more computer time than number-crutching, we have set the
parameter of Steps Per Display (SPD) in the evolution to 20, meaning that
the view will be refreshed only after 20 evolution steps. The highSpeed
check box element in the simulation interface can even increase the SPD pa-
rameter to 200, causing trajectories to be computed much more efficiently
(although the realistic pendulum motion becomes wild).

Exercise 5.15.
Locate the equilibrium positions of the pendulum in the phase-plane. They
correspond to the pendulum up and down position with zero angular veloc-
ity. The lower position is stable (though not asymptotically stable) and the
upper one unstable. Although difficult to locate exactly, the phase-portrait
suggests that there are two trajectories in which the bob tends to the upper
position. However, it would take an infinite time for the bob to reach this
limit position. This trajectories are called separatrices because they separate
regions of the phase-plane where the trajectories show different qualitative
behavior. 2

5.7 A CHAIN OF OSCILLATORS

We introduced simple harmonic motion caused by a linear oscillator in the
MassAndSpring model of Chapter 2. We now consider a linear array of
coupled springs forming a chain of oscillators as displayed in Figure 5.16.
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Figure 5.16: A chain of coupled linear oscillators modeled with EJS. The
configuration displayed here corresponds to a normal mode where every
particle moves sinusoidally with the same frequency.

This model can be used to study the propagation of waves in a continuous
medium and the vibrational modes of a crystalline lattice.

The OscillatorChain model contains 31 coupled oscillators equally
spaced within the interval [0, 2π] and with fixed ends. Let yi = y(xi, t)
represent the displacement of a particle with horizontal position xi along
the oscillator chain. Because it is assumed that the particles do not move in
the x-direction, we need only consider forces in the vertical direction. The
force Fi on the i-th particle depends on the relative vertical displacement
between that particle and its nearest neighbors and can be written as

Fi = −k[(yi+1 − yi)− (yi − yi−1)]. (5.7.1)

where the Hooke’s Law k constant is the same for all springs.

The main page of variables of this model, displayed in Figure 5.17,
declares one-dimensional arrays for the dynamic variables x, y and vy.

Figure 5.17: Dynamic variables for the oscillator chain. Arrays of n length
are used for the coordinates and velocities of the particles.

Declaring an array is certainly appropriate for this problem due to the
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large number of particles involved. The initialization of the horizontal and
vertical positions of the masses, x and y, requires the following code in an
initialization page of the model.

_pause();

t = 0;

double x0 = 0;

for(int i=0; i<n; i++) {

x[i] = x0;

y[i] = _view.function.evaluate(x0);

v[i] = 0;

x0 += dx;

}

This code distributes the masses according to an initial pulse given by the
expression introduced by the user in the Function element of the view.

The most interesting new feature of this model is the use of the ODE
editor of EJS with one-dimensional arrays. Figure 5.18 shows that the ODE
editor accepts differential equations where the state variables are given by
elements of one-dimensional arrays. In this case, we just need to type the
state variables y and vy, and the editor will add to them the suffix [i].
This suffix defines a dummy index i which can be used in the Rate column
to provide the rate of the given component of the state array.

Figure 5.18: The ODE editor of EJS used to declare a system of ODEs with
one-dimensional arrays as state variables.

In our case, the rate of the i-th state component y[i] is simply the
i-th component of the velocity array, vy[i]. The rate of the i-th component
of the velocity array is provided by a custom method defined as

public double acc(double[] y, int index) {
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if (index==0 || index==n-1) return 0;

else return k*(y[index-1]+y[index+1]-2*y[index]);

}

which corresponds to equation (5.7.1) (for unit masses). The fixed end points
of the chain have zero acceleration. Finally, a page of constraints computes
the lengths of the springs which will be used for the visualization.

for(int i=0; i<n-1; i++) springDy[i] = y[i+1]-y[i];

The view of the simulation uses sets of drawable elements to display
the n particles and n-1 springs which form the chain. Of particular interest
is the On Drag action property of the particles element. The code

double xp=0;

for (int i=0; i<n; i++) {

x[i] = xp;

xp += dx;

}

_resetSolvers();

reinitializes the x array to equidistant values to counteract the possibility
that the user drags the masses horizontally. The resetSolvers() prede-
fined method of EJS is required only in case we plan to use a numeric solver
for the ODE which uses interpolation. Using an interpolator solver when
there is a high number of equations involved may improve performance. In-
terpolation solvers keep an internal copy of the ODE state that they use in-
telligently to optimize the performance of the solver. The resetSolvers()
method must be called whenever the user changes the state of the simulation
so that interpolators can update their internal state to match that of the
system. Solvers which use interpolation are clearly marked in the Solver
combo box.

One way of understanding a lattice of N coupled oscillators of length L
and mass M is to study the motion of its normal modes. A normal mode is
a special configuration (state) where every particle moves sinusoidally with
the same frequency. The m-th mode Φm of the oscillator chain of length L
is

Φm(x) = sin
mπ x

L
. (5.7.2)

The system stays in a single mode and every particle oscillates with constant
angular frequency ωm if the oscillator chain is initialized in a single mode.

ωm =
4k

M
sin

m π

2N
). (5.7.3)
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Normal modes are important because an arbitrary initial configuration can
be expressed as sum of normal modes.

Exercise 5.16.
Run the OscillatorChain model and experiment with different normal
modes. The m-th normal mode of this system can be observed by entering
f(x) = sin(mx/2) as the initial displacement. Do all particles oscillate with
the same frequency in given normal mode? Do all normal modes have the
same oscillatory frequency? Are there a finite or an infinite number of nor-
mal modes? (That is, what happens to the oscillator chain as m increases.)
2

Wave propagation can be studied by entering a localized pulse or by
setting the initial displacement to zero and dragging oscillators to form a
wave packet. An interesting and important feature of the OscillatorChain
model is that the speed of a sinusoidal wave along the oscillator array de-
pends on its wavelength. This causes a wave packet to disperse (change
shape) and imposes a maximum frequency of oscillation (cutoff frequency)
as is observed in actual crystals.

Exercise 5.17. Dispersion exercise here.
2

5.8 A MINI SOLAR SYSTEM*

Figure 5.19: An n-body problem with approximate data from the Sun,
Venus, Earth and Mars. The right, geocentric view clearly shows the appar-
ent retrograde motion historically observed on Mars.

The implementation of the model of the previous section showed an
advanced feature of the ODE editor which helps declare differential equa-
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tions for systems of very high dimensions. In the case in which the variables
are not very much interrelated, i.e. the rate of a state variable depends only
in a few other states, differentiating array elements independently (as we
did) can appropriately solve the problem. In other situations, this approach
can be rather inefficient and we demonstrate a more efficient approach in
this section.

Exercise 5.18.
The OscillatorArray model computes the acceleration of the oscillators us-
ing a single custom method named double[] acc(double[] y) that takes
an array as input and returns an array containing accelerations. Compare
the implementation of the custom methods in the OscillatorChain and
OscillatorArray models and also note the very slight difference in the
ODE editors. Which custom method is easier to code? Which is easier to
understand? Which is more efficient? Give reasons for your answers. 2

Consider a small solar system in which three planets with approxi-
mately similar masses orbit a central, more massive star following orbits
which are in the same plane. Newton’s Universal Gravitation Law states
that every two (spherical and with uniform density) bodies attract them-
selves with a force given by

Fij = −G
MiMj

‖ri − rj‖2

ri − rj

‖ri − rj‖ . (5.8.1)

Fij is the force exerted on the body i by the body j. G is the Universal
Gravitational constant 6.67428 × 10 > −11 m3Kg−1s−2, the M ’s are the
masses of the bodies, and the r’s the position vectors of the centers of the
bodies. The minus sign in equation (5.8.1) makes this an attractive force,
directed along the relative position vector ri − rj .

Implementing the resulting system of equations using an approach
similar to that of Section 5.7 is possible but very inefficient. In the first place,
notice that computing the acceleration of a given body means computing the
sum of the forces exerted by all other bodies. However, because Fij = −Fji

(Newton’s Third Law), we are bound to compute each force twice. Also,
computing separately the x and y components of any of these forces will
make us repeat the costly computation of ‖ri − rj‖.

To help us improve the efficiency in cases like this, the ODE editor
of EJS allows us to specify all the states of the system in a single one-
dimensional array, which is then differentiated as a whole. The SolarSys-
tem model displayed in Figure 5.19 creates a one-dimensional state array
with as many as 4*nBodies entries. Every four entries of this array will
contain the values of x, y, vx, and vy for each of the bodies. Figure 5.20
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shows how the ODE editor implements the differential equation for our so-
lar system using a single differential equation. The special way in which the
state has been entered, typing it with the explicit [] suffix, tells the editor
that the rate will be given also using an array of doubles.

Figure 5.20: The ODE editor using a single state array. Notice the [] suffix
on the state variable. The rate cell for this state should then return an array
of doubles of the same length as the state.

Because we will be displaying the solution of the trajectories every 7
days and there is an important variation of the forces with the distance,
we have selected an adaptive solver with a very demanding tolerance of
10−15. The DoPri853 solver uses a very high order Runge–Kutta adaptive
algorithm to reach this tolerance together with interpolation that minimize
the number of computations. DoPri853 is probably the most powerful and
efficient algorithm implemented in EJS.

The Auxiliary Vars page of variables of this model also declares a rate
array with the same length as state and two smaller (of length 2*nBodies)
arrays called ZERO and force. These arrays are used to compute the forces
on each body using custom methods. The code for the acc method which
computes the acceleration of each body is

public double[] acc (double state[]) {

computeForces(state);

for (int i=0,i2=0,i4=0; i<nBodies; i++,i2+=2,i4+=4) {

rate[i4 ] = state[i4+1]; // x rate is vx

rate[i4+1] = force[i2]/mass[i]; // vx rate is fx

rate[i4+2] = state[i4+3]; // y rate is vy

rate[i4+3] = force[i2+1]/mass[i]; // vy rate is fy

}

return rate;

}

The for loop looks cumbersome but, once the forces are computed,
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it just uses the (x,vx,y,vy) structure of the state array to fill the corre-
sponding rate entries. The model derived from equation (5.8.1) is really
implemented in the computeForces() method.

public void computeForces(double[] state) {

System.arraycopy(ZEROS,0,force,0,force.length); // clears the force array

for(int i=0,i2=0,i4=0; i<nBodies; i++,i2+=2,i4+=4) { // for each body

for(int j=i+1,j2=2*j,j4=4*j; j<nBodies; j++,j2+=2,j4+=4) { // against other bodies

double dx = state[i4 ] - state[j4 ];

double dy = state[i4+2] - state[j4+2];

double r2=dx*dx+dy*dy;

double r3=r2*Math.sqrt(r2);

double fx=G*mass[i]*mass[j]*dx/r3;

double fy=G*mass[i]*mass[j]*dy/r3;

force[i2] -= fx; // force array alternates fx and fy

force[i2+1] -= fy;

force[j2] += fx;

force[j2+1] += fy;

}

}

}

Because the second loop starts from j=i+1, each force is only computed
once, using Newton’s Third Law to update simultaneously the forces on
bodies i and j. Notice also the x and y components of each force are
derived with the same computational effort.

See how we used the ZEROS array (which is a constant array of zeros) to clean
the contents of the force array. The use of the System.arraycopy method
provided by Java is more efficient than a loop of the form
for(int i=0; i<force.length; i++) force[i] = 0.0;

The simulation displayed in Figure 5.19 shows the trajectories of a
mini solar system composed of the Sun, Venus, the Earth, and Mars using
real astronomical data taken from [?]. The data, indicated in an initial-
ization page, is appropriately converted so that the unit of length is one
Astronomical Unit (1AU = 149.597 × 109 meters), the unit of mass is the
mass of the Earth (5.9736× 1024 Kilograms), and the unit of time one day.
A second initialization page computes the center of masses and makes it the
(inertial) reference frame. This change of frame is helpful for situations in
which there is not a very massive body which won’t barely move and can
be used as the center of the reference frame.

The view uses the ParticleSet and TraceSet elements to display
the motion of the bodies both in a frame located in the center of mass
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and in a geocentric view. This second view allows us to see the apparent
retrograde motion of the planets as seen from the Earth. See Figure 5.19.
In order to give the bodies different colors we defined an array of variables
of Object type and initialized the elements in this array using the Java class
java.awt.Color (see Appendix ??). The particles are also given different
sizes (although not to scale).

Exercise 5.19.
The Solar System initialization page contains also data for Jupiter and Sat-
urn. Change the value of the nBodies variable to 6 to see them. 2

Exercise 5.20.
This exercise shows that if the Sun wouldn’t have been so massive as com-
pared to its planets, the motion of the Earth (and therefore life on it) would
have followed a much more different fate. Make Mars much more massive
(as much as one-tenth the mass of the Sun) and see how the orbits of the
inner planets become erratic. 2

Exercise 5.21.
Simulate the orbit of a planet orbiting a binary star. A binary star is
actually a set of two stars with similar masses orbiting around each other.
Make Mars as massive as the Sun and locate Venus and the Earth away from
both. Show that orbits close to the binary star are very unstable (eventually
even escaping from the system) while those far enough from the center of
masses of the binary stars approximate elliptical trajectories.

Disable the Center of Masses initialization page (right-click on its tab
and select the entry Enable/Disable this page) and see how the whole system
slowly drifts up making the description of motion even more complicated.
Choosing the right reference frame is frequently an important decision. 2

5.9 DIRECTION FIELDS OF PLANAR AUTONOMOUS SYSTEMS*

[Note to reader: The 3D Vector Field element used in this section is prelim-
inary. The 3D code here will likely change in the next release of Easy Java
Simulations.]

The Lotka–Volterra model is an example in which the typical qualita-
tive behavior of all trajectories is more interesting than a particular solution
with given initial conditions. Providing initial conditions for the number
of different fishes in the Mediterranean Sea, for instance, can only be done
through statistical (approximate) means. Because the model is non-linear,
we need to use numerical and graphical techniques to study the qualitative
behavior of solutions.
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It is possible to define a direction field for two-dimensional systems in
which a segment is drawn for each point in (x, y, t)-space, similarly to what
we did for one-dimensional systems in Section 5.4. However, the plot will
now be three-dimensional and difficult to apprehend. For two-dimensional,
autonomous systems of the form

ẋ = f1(x, y)
ẏ = f2(x, y),

(5.9.1)

it is more common to plot a map similar to a phase-space. We then draw a
segment at each point of a grid in the (x, y)-plane, according to the direction
given by the vector (f(t, x, y), g(t, x, y)). This plot is also called a direction
field (although it is different from the direction field introduced previously)
because it is the field for the one-dimensional ODE obtained dividing the
equations in (5.9.1):

d y

d x
=

f2(x, y)
f1(x, y)

. (5.9.2)

(Notice that in this new problem, the independent variable is now x.)

The DirectionFieldPlotter3D simulation is a variation of Direc-
tionFieldPlotter in which we plot the direction field and the solution in
both the three-dimensional (t, x, y) space and in the two-dimensional (x, y)
phase-space. Figure 5.21 shows the plots for the Lotka–Volterra equations
for typical values of the parameters.

Figure 5.21: The grid of small grey arrows indicate the direction field of the
ODE in (x, y) phase-space (left) and in (t, x, y) three-dimensional space. The
ODE shown is Lotka–Volterra’s model for the predator and prey system.

The implementation of this simulation extends that of Direction-
FieldPlotter in obvious ways. The main difference is that we allow the user
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to select initial values for the populations, x0 and y0, which we take as ini-
tial conditions at time t0 = 0. Hence, we always compute the solution curve
forwards in time. The view of the simulation includes three-dimensional
drawing elements and, although they behave in a similar way to two di-
mensional elements in the plane, we must postpone their discussion until
Chapter ??. But we thought it was important to be able to compare the
three- and two-dimensional views of the solution curve and the trajectory,
respectively.

Notice that, in three-dimensional space, a solution curve never passes
twice through the same point because t is always increasing. Uniqueness
of solutions imply also that two solutions never cross. The behavior of
trajectories (x(t), y(t)) in phase-space can be different, since trajectories are
projections of the three-dimensional solution curves along the time axis.
(To experience the feeling of this projection, left-click and drag the three
dimensional scene to rotate it until the time axis points towards you.)

Exercise 5.22.
Use the DirectionFieldPlotter3D simulation to plot the fields and trajec-
tories of other two-dimensional systems. For instance, try a modification of
the Lotka–Volterra model in which preys must compete among themselves
for limited food supply:

ẋ = a x− b xy − e x2,

ẏ = −c y + d xy.
(5.9.3)

Try e = 0.1 for the value of the parameters shown in Figure 5.21 and increase
the maximum allowed time to 500. The trajectories in phase-space loose
their periodic behavior and spiral now towards an equilibrium point. An
equilibrium point existed also in the unmodified Lotka–Volterra model, but
now becomes attractive or asymptotically stable. This behavior means that,
no matter their initial values, in the long run all populations approach a
constant value given by the coordinates of the equilibrium point. 2

Exercise 5.23.
Does it make sense to plot the phase-space direction field for non-autonomous
systems? Judge by yourself. Enter the non-autonomous system

ẋ = 0.05 (1.5 + sin(t/50))x− 0.2xy

ẏ = 0.2xy − 0.05 y.
(5.9.4)

in DirectionFieldPlotter3D and see how the field changes with time.
Now trajectories in state-space can cross each other but also themselves in
a non-periodic form. 2
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PROBLEMS AND PROJECTS

Project 5.1 (Validation of Newton’s proportional cooling law). Before using
it extensively, models need to be validated by comparing their predictions
to known solutions of the problem or to experimental data. The Cooling-
CoffeeData.txt file in this chapter’s data subdirectory contains data from
a real experiment of a cooling cup of black and creamed coffee at a constant
room temperature. The fit of Figure 5.1 was created with the simulation
CoolingCoffeeValidation, which reads the data and plots it, together with
the graph of the solution given by (5.1.2). Run this simulation, which has
initially wrong parameters Tr and k, and try to adjust the parameters of this
solution so that both plots match to a reasonable degree of accuracy. [Hint:
Run the simulation with the default parameters and right-click the experi-
mental time series to bring in a data set tool as indicated in Appendix ??.
Define a new fit according to equation (5.1.2). Use the parameters provided
by the Autofit checkbox and re-run the model.]

The CoolingCoffeeValidation simulation uses the class ResourceLoader

from the package org.opensourcephysics.tools. This class handles access
to data typically found on disk files. The class takes care of finding the file
and converts the data in it into a ready-to-use format. See Table 5.1.

Table 5.1: Examples of methods in the class ResourceLoader.

getString(String path) Reads the contents of a text file and
returns it as a single String. Lines are
separated by the new line “\n” charac-
ter.

getIcon(String path) Returns an object of the
javax.swing.ImageIcon class with
the contents of the graphic file.

getIcon(String path) Returns an object of the
java.applet.AudioClip class with
the contents of the audio file.

Project 5.2 (Validation of Newton’s proportional cooling law with changing
outside temperature). The CoolingCoffeeEditorValidation model uses
the ODE editor to solve equation (5.3.1) with an outside changing reference
temperature provided by data recorded experimentally. The file Cooling-
WaterData.txt in the data directory provides records of the cooling of
hot water on an insulated steel cup and a regular cup, together with the
surrounding (cooler) temperature for 8 hours. 4 Reading the data file and

4The data was kindly recorded for us by Roger Frost (see http://www.rogerfrost.com) outdoors
in Cambridge, UK, on October 13th, 2007, starting at 9:00 AM.
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using it to create a usable Tr() method requires some Java technicalities.
For instance, we use an object of the class java.util.ArrayList to accom-
modate an unknown number of entry points. We also use a binary search
algorithm to interpolate data in between the times provided by the file.

Use the simulation to try to adjust the parameter k so that the data
produced by the theoretical model matches as closely as possible the exper-
imental data. We found the data obtained from the isolated cup provided a
better fit than the regular cup, although fitting the first part of the graph
is difficult in both cases. What is a possible explanation for this?

Project 5.3 (Harvesting in the Lotka–Volterra model). To provide a possible
explanation of the decrease of percentage of the catch of food fish during
the World War I period, Volterra modified the original model (5.5.3) to
introduce fishing. A model which uses constant-effort harvesting is given by
equations

ẋ = a x− b xy − h1 x,

ẏ = −c y + d xy − h2 y.
(5.9.5)

for non-negative constants h1 and h2. Modify the models of this chapter
to show that a moderate amount of fishing increases the averages of prey
and decreases that of predators. This was Volterra’s explanation of the
phenomenon, since fishermen were involved in the war during the conflict
and harvesting decreased noticeably during those years.

Project 5.4 (Dumped, driven pendulum). Although we will deal with pen-
dula in detail in Chapter ??, modify the SimplePendulum model to inro-
duce a dumping term and a driving force. The resulting equation is

θ̈ = − g

L
sin(θ)− b ω + T (t). (5.9.6)

The positive parameter b provides a frictional force proportional to the an-
gular velocity. The forcing term T (t) corresponds to an external torque on
the pendulum. Use a sinusoidal function of the form A sin(f t), where A is
the amplitude of the torque and f its frequency. Explore how the new terms
affect the phase-space portrait.

Project 5.5 (Length of a planet’s year). Run the SolarSystem simulation
with an increment of time of one day and compute approximately the length
of the year for each of the planets. Notice the difference with the real lengths
(224.70 days for Venus, 365.25 for the Earth, and 779.96 for Mars). The
reason is that we have used the average orbit velocity for each planet as the
velocity at its aphelion (the farthest point from the Sun). Explain why this
is incorrect and try to provide a more accurate value of the velocity at the
aphelion (and hence of the year length) of the planets.
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Project 5.6 (Logistic growth). (DRAFT TEXT) Use the techniques dis-
cussed in this chapter to study the solution of the continuous Logistic
Growth model given by Ṗ = r(1 − P )P . Add harvesting (+Ho sin (2 pi
t)) and/ or migration to it +q(t) (Borelli and Coleman pg 127 and 125,
resp.).

Project 5.7 (Trajectories in Dipole Fields). A charged particle in electric and
magnetic dipole fields.

Project 5.8 (Particles with Drag and Spin). Physics of sports.

Project 5.9 (Airplanes with Lift). Flight.

APPENDIX: NUMERICAL METHODS

[To be written]


