Multielectron atoms — going beyond
independent electron approximation.
The coupling of angular momenta



Independent electron approximation — IEA

To each electron we may assign a quantum state,
defined by a set of quantum numbers (n, |, m;, m,)

The atom is characterized by a well defined electron
configuration

A configuration is defined by the number of electrons on
each orbital (characterized by n and I)

Ex: Phosphorus 1s2 2s2 2p% 3s2 3ps.



e The best IEA method is the Hartree-Fock method
o It takes into account the Pauli exclusion principle

e The totally antisymmetric wavefunctions are expressed
by the Slater-determinants




The Hartree-Fock method finds the best wavefunctions
and energies within the IEA

This is not exact because of the nonspherical components
of the electron-electron interactions

Part of these interactions are related to the coupling of
angular momenta

— Electrostatic interactions
— Spin-orbit interactions

We assume in the following calculation, that the
electrostatic interactions are larger than the spin-orbit
ones (Russel-Saunders coupling, valid for small Z atoms)



L the total orbital momentum of the electron system

S the total spin
L. and S. the 0z components

e These operators and H commute, so they have a
common set of eigenfunctions

 These eigenfunctions should obey the eigenequations

e The Slater-determinants do not obey always these
requirements



e The Slater-determinants are eigenfunctions of the one-
electron angular momentum operators

where 7 = 1, N and /N being the number of electrons.

o We want to construct wavefunctions from the Slater-
determinants, which are eigenfunctions for the whole
electron system.

e We make a transformation from the one-electron
angular momenta representation to the total angular
momentum representation

e This procedure is the coupling of angular momenta



o System with 2 electrons
e At this moment we neglect the spin

e The relationship between the one-electron (I,,m,,I|,,m,)
and the total angualar momentum (l,,1,,L,M)
representation may be written
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e Taking into account the spins
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Electrostatic corrections to the
Hartree-Fock method

e Orbit-orbit and spin-spin interactions
e Russel-Saunders coupling

e We neglect the spin-orbit interactions
e Perturbational method

e The unperturbed wavefunctions are eigenfunctions of
L°, S?, L. and S.

e The first-order perturbational correction may be written
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e The vector ‘Ail] 9 li\rL SM; M 5)

may be expressed as a linear combination of Slater
determinants

e Example for the dependence of the energy on the spin
coupling — the helium atom

e Triplet case — S=1, orthohelium
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e The sum reduces to one term -> one Slater-determinant

o Separating the spatial and the spin part of the
wavefunction

o,
ek
-

'ir"{"‘ﬂ.-ﬂ m (:1‘1 ) X+

Unim (I‘E )

o

Ui11(q1,92)

B b=

=
H_

(] LT e ]

T,
o
o

1

ﬁ ['7'3,.'{-'1 100 ( r1 ) "i.i'i"' nlm ( r ) — Iir'{‘! nlm ( Iy ) 'T.J'{*’l 00 ( ro ) ]

il

Xx41(1)x11(2).

2 ‘ )
_ =




10l11m0)




e The Slater-determinants
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e Singlet case — S$S=0, parahelium
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e The Slater-determinants
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The (Psrr. |H' | Wspr.) correction will depend on S.

e The spatial wavefunction
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Nneg =1, np = n
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The corrections are obtained by the diagonal elements
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The enrgy of the ortho (triplet) state will be lower than the enrgy of the para
(singlet) state
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More general — Hund’s rule for the spin:

For a given electron configuration, the term with
maximum multiplicity (25+1) has the lowest energy.

Hund'’s rule for the angular momentum

For a given multiplicity, the term with the largest value
of L has the lowest energy.



We give an example also for the dependence of the energy on L. Let’s
consider an atom with two p electrons on its outer shell. It these are equivalent
(has the same principal and orbital quantum numbers), the possible terms are
1S, D and 3P. Taking into account the previous discussions, the triplet state
will have the lowest energy. We will compare the energy of the two singlet terms,
in order to investigate the L-dependence

We may take only the spatial part of the wavetunctions
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In the H' perturbational potential only the term containing the interaction of
the two electrons 1/r;5 will depend on L.
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The matrix elements can be calculated with the known method. For the first
two terms from the expansion of 1/ris remain only I = 0, 2, m; = 0 for the
third term [ = 2, m; = 2, while for the last one [ = 2, m; = 1. Performing the
calculations we get
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If L = 2, the form of the (37) expansion depends on the value of M. But
the energy without any external field cannot depend on M} , and we can choose
a value, for example M; = 2
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All radial integrals are positive, so the energy of the L = 2 state will be lower
than that with L = 0 because 1/25 < 2/5.
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