Electron transitions



Time-dependent perturbation theory

We assume that the H(t) time-dependent Hamiltonian of a quantummechanical
system can be written as a sum of two terms

H(t) = H" + V(t). (1)

Here HY does not depend on time, and its eigenstates and eigenvalues are known.
V(t) is a time-dependent perturbation (interaction), acting between ty and t.

Before #; the system is in an eigenstate of HY, denoted by i. Due to the
V(i) perturbation it goes to another eigenstate, f. The evolution of the system
between f; and ¢ may be described by the U(t,ty) evolution operator. The
wavefunction of the system at moment ¢ will be
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One may write for the evolution operator the differential equation
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which is equivalent to the time-dependent Schrodinger-equation.



After the system has evolved to state ¥(t), and the perturbation stops acting,
the system has to go to an eigenstate of the HY. The probability of a transition to
a certain state f depends on the ( f|¥) overlap integral, which is called transition
probability amplitude. The transition probability can be calculated as
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Further instead of the usual Schrodinger picture we use the interaction or
the Dirac picture. In this case the time dependence of the U;(t,1y) evolution
operator contains only the influence of the perturbation, and does not contain
the periodic factor present in the Schrodinger picture even for time-independent
Hamiltonians

Ui(t,to) = U (L, t0)U(t, o), (5)
where U%(t, 1) is the evolution operator of the system in the absence of the

perturbation. The UY(#, tq) satisfies the
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The solution may be written

UO(t, o) = ¢ (0], (7)
It can be proved that
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where
Vi(t) = U (t, to) V() U (t, 10) (9)

is the perturbation potential in the interaction picture. The eigenfunctions of
HY in this interaction picture are identical to the stationary wavefunctions.
Integrating formally (8) between tg and  we obtain
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1 is an integration constant obtained by the
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initial condition.



The (10) integral equation may be solved by the iteration method. Let’s
take as the first guess for the U;(ty,tg) evolution operator 1. In this Oth order
approximation the perturbation interaction is neglected, the system remains
unchanged. In the first order we get
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For the second-order approximation we insert the operator obtained in first
order into the right-hand side of (10)
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and so on. By this method we obtain the perturbation expansion of the evolution

ap erator

Ur(t, to) = 1+ > U (t, 1), (14)
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where U, ' is the nth order correction to the evolution operator. These correc
tions may be obtain by the integrals
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We write the interactions using (9) into the Schrodinger picture
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Writing the UY operators into the form (7), the moments {5 reduce
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Let us write the transition amplitude in different approximations. The total
amplitude is

a=(f

While the nth order amplitude
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In Oth order f
a0 — (fli) = 8it, (20)

because of the orthogonality of 7 and f we do not obtain transition.
Writing the first order amplitude we take into account that ¢ and f are the
eigenstates of H” with eigenvalues F; and E;
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The expression above means that the perturbation causes a transition in one
step from the initial state to final state in moment ¢,.



The second-order amplitude may be calculated as
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Here taking into account the

> k) (k| =1 (23)

A‘

closure relation, the complete system of the eigenstates of H" is inserted into
the expression, taking into account that the eigenvalues of HY are Fj,
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Interpretation: the perturbation causes a transition in #; into the intermediate
state k£, and after that in moment #, causes another transition into the final
state. Because intermediate states are not measured, we have to sumn over all

possible intermediate states (paths).




