3.2. The cross section

A scattering process or an electron transition caused by a projectile can be
characterized by the cross section.

Let’s consider a scattering process, particles X being the target. This is
bombarded by a monoenergetic beam of projectiles Y. Jy — the flux of the
projectiles, the number of the incident particles per unit of time and per unit
of perpendicular area. We neglect the interaction between the projectiles.

First we take into account only elastic scattering. dNy is the number of
scattered particles per unit of time in the direction (2, element of solid angle
df). This quantity may be written

ANy () = Jy S(Q2)d.

where (1) is a characteristic of the target. If we have in the target N x identical
scattering centers (target atoms), and we assume that there in no coherence
between the scattered waves by different centers, and each projectile is scattered
only once, the number of scattered particles will be proportional to the number
of target atoms.

dNy (1) = Jy Nxoi(Q)d2, (26)




Here 04(02) is an area-like quantity, and is a characteristic of one scattering
center. This is the elastic differential cross section. We introduce ., the total
differential cross section
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This quantity is approximately equal to the area of a circle with the radius
being the range of the potential between the two particles.

In the case of an inelastic collision the target quantum state is changed, from
i to f. The characteristic cross section for this transition may be written

_ Niog
T JyNx

We also may define several differential cross sections. For example

(29)
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Further we assume, that we have only one scattering center, which is bom-
barded by a monoenergetic beam of identical particles. The quantum state of
the projectiles differ only in the impact parameter relative to the target.




Let w(i,®, — f) be the probability of the transition i — f for impact
parameter b-tr If in the unit of time are scattered Ny particles, the number of

i — [ transitions are
Ny

Niog =Y w(i,®n; — f) (31)
1=1
If Ny — oo, the sum is transformed into an integral over a perpendicular plane
to the beam direction

Nﬂfzfﬁmﬁw@¢h%fy (32)

We assume a homogeneous flux

Nip=Jy /{Fb’:‘f,-‘(?:,‘f’h — f). (33)

Comparing (33) with (29) and taking into account that Nx = 1, for the cross
section we obtain

Tivf = /dgh-'u:(:i,‘ﬁh — f). (34)

We will use this formula for further calculations. Similarly, the (30) differential
cross section may be expressed

djn— ] i  f
dy ---dQ,dEy ---dE,

where |®') is the final state with a given energy and angular distribution.
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3.3. Electron transitions induced by charged par-
ticles

If the projectile has large energy, it may be described classically. For this ap-
proximation to be valid the de Broglie wavelength of the projectile should be
much less relative to the atomic dimensions. If also the energy and momentum
transfer are negligible to the projectile energy and momentum

pi B pp >> V2MAFE, (36)

(pi and p; being the initial and final momentum, M the mass of the projectile,
AFE the energy transfer), the movement of the projectile is approximated by
a straight-line trajectory and constant velocity. This approximation is called
semiclassical approximation (SCA) or impact parameter method {(TPM)

Taking into account (4) and (34) the cross section for transition ¢ — f may
be obtained

Tisf ]{fzhhlg ,J'{b”z
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Quantum states ¢ and f, and the Uy(4+00, —o¢) evolution operator are for the
electron system. The projectile-electron interaction is taken to be the pertur-
bation.




One-electron transitions

We assumne the independent-electron approximation, and take into account only
one active electron. If the energy of the projectile is much larger relative to
the interaction, we may apply first-order perturbation theory. Usunally this is
valid for projectiles above 100 ke‘»-"/uxz;";’ energy, 4, being the charge of the
projectile.

Let us take an excitation process. The amplitude in first order may be
calculated from (21). The perturbation potential is the Coulomb-interaction
between the projectile and the active electron

—Zp Zp
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R.. being the distance between the projectile and the electron, R and r the
p . . _

position vectors of the projectiles and the active electron, respectively. Taking

the origin in the nucleus, we can write

R = b+z (39)

R = b+ 22 (40)




We change the variable in the time integral from (21)
z=wvl; dz = wvdlt,

and we obtain for the first-order amplitude
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The potential is expanded into the multipole series
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and we separate the orbital part of the electron wavefunctions
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Using the analytical formula for the integration of the product of three spherical
harmonics, we obtain
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Let us look now to the ionization process. The ejected electron may leave
the atom with different energies and angular momenta. It is usual to expand
the final state into a series of the eigenstates of L? and L. (spherical harmonics)
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This expansion is called the partial-wave expansion of the ejected electron, o,
being the phaseshift, p the momentum of the electron R;, (pr) the radial function
of the partial wave. For plane waves (no interaction) the partial waves are the
spherical Bessel functions, for purely Coulomb potential may be expressed by
the Coulomb waves

/21 Z

Ry (pr) =\ ——F . (——, pr), 48

ff(l ) \/W}JT ff( p.I ), (48)

while in other cases has to be obtained numerically (by solving the radial
Schrodinger equation.

Using the same method as for the excitation we can obtain the amplitude
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and the differential cross section in terms of the direction and magnitude of the
final momentum of the electron

d’o _ /d bl > a (P (50)
dpdp f ! ”’f

I;m;

It we need the total cross section we have to integrate over the momentum vector.

Using the orthonormality of the }f;m; (p) spherical harmonics, integration over
the angles is easily performed, and we get

o = /rf b/ p dp Z |r1‘, mf{;r:a 2, (51)

f;mf

where the amplitude does not contain the Y;*

depend on the direction of the momentum. 'TLE energy of the final state may
be written as

- (p) functions, and does not

(52)

(53)

where[ is the ionization potential.
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FIG. 5. Differential cross sections of electron emission from
H, target by 1-MeV proton impact. The experimental values
are taken from Toburen and Wilson [5]. The theoretical curves
are calculated with Shull-Ebbing (solid line), atomic (long-
dotted line), and Heitler-London (short-dotted line) wave func-
tions.
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