The Hartree-Fock method



The trial function should be totally antisyvmmetric
TEA — Slater-determinant
qi; — spatial and spin coordinates (¢; = (rj, 0;), i = 1, N),

A — the states (A = a,3,....,v).
N no. of electrons and of occupied states (Pauli principle)
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In the ground state of the atoms (S and L has maximum value) the wavefunction
of the system can be expressed by a single Slater-determinant.
This determinant is taken to be the trial function for the variational method.

We have to minimize the E[¢] = (¢|H |¢) functional with the orthonormality
conditions of the pi-orbitals
spin
(uplun) = dun, A =0,7. (2)



We split he Hamiltonian into two parts
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leading to

Elo] = (¢ Hy | ) + (0| Ho ).
We write the Slater-determinants into more compact form
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P — the permutations of coordinates g;
¢r — the non-symmetrized wavefunction

O = ua(qi)us(g2) - -u,(gn),

while A is the anti-symunetrization operator
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It has no effect on a totally antisyvmmetric wavetunction. This operator projects
a wavefunction on the subfield of totally antisymmetric wavefunctions.

AZ= A (9)

H, and H, are invariant under permutations of the electron coordinates, hence
commute with A

[Hy, Al = 0 (10)
[H2, Al = 0. (11)

Let’s calculate the matrix element

(O|H,|p) = NUoy|AH Alpy) = NUoy|H A% |dn)
= NUYoéu|HiAlgpn), (12)

where we ave used (10) and (9). Introducing (8) and (3) we obtain
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= > {(ur(gi)|hilu(a:). (13)
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We have taken into account the (2) orthogonality conditions. Finally we have
replaced the sum over the electrons with the sum over the occupied states.

We introduce the notation

Iy = (ux(qi)|h;lux(qg;)). (14)

obtaining

(d|Hilo) =Y I (15)
A

Similarly we can write for the matrix elements of the two-electron operators

(0| Hs|¢) = NUon|AHsA|pn) = NUby|HoA|dw)
1
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We have taken into account that because the orthogonality of uy for a given i, j
pair from the sum of permutations remain only u, and wu, depending on ¢; and

g; coordinates. F;; is the exchange operator for the {.*(mldlnfﬂera of electrons ¢
and 7.




Switching to the sum over the states
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The sum is over N(N — 1)/2 orbital pairs. We introduce the notation for the

matrix clements
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Jry — Coulomb (direct) integral
K, — exchange integral

We can extend the sum over all A, u, because the terms with A = o will be
zero (Jay = Ko, and all other terms will appear twice. Finally
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The functional
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We have to take into account the (2) additional conditions in the minimiza-
tion.
Lagrange-multiplier method

O | E[g] =Y explunluy) | =0. (22]
AL ft

It can be proved, that the €, matrix can be diagonalized. We assume, it is
done, so ey, = 30y, . In these conditions

SE[6] — > Exd{ualua) = 0. (23)
A

We perform the variation as for the Hartree-method
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where A takes all the values for the N occupied states between o and v. The
equation above are the Hartree Fock equations.
exchange integrals
The Hartree Fock-potential is the same for each electron, and the u, solu-
tions (Hartree Fock orbitals) are orthogonal to each other.
Introducing the direct and exchange operators
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Vi) = (ul—lu,) = V() (25)
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and the potentials
Vi) = ) Vi) (27)
I

Ve = Vi) (28)

I

we can write

I 2 Z : ex c
— VI = V) + v {q;j} ux(gi) = Exux(q;). (29)
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This system can be solved by the self-consistent field method.
Usually we separate the spatial and spin-dependent part of the wavetunctions

wx(qi) = u;.t(rlj)(m (i), (30)

where

) — 5-:1@-:1.',’;' 1 (31)

and m? is the magnetic spin quantum number for the electron in state A. In-
troducing (30) into (24) the Hartree Fock equations may be written for the
wavetunctions depending only on spatial coordinates
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ij

A = o, r.

Generally these partial differential equations should be solved in 3 dimen-
sions. If the potentials are not spherically symmetric, solving these equations is
very complicated.

If we have closed shells — the Hartree-Fock potentials are spherically sym-
metric.



In other cases usually the potentials are approximated by a spherically sym-

metric potential — spherically averaged.
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spherical harmonics, and we can write the following radial equations
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+ Vi(r;) — V& {'?':'J} Poi(ri) = EnPri(r:), (33)
where
Vi) = > Vi) (34)
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V() =Y V() (35)
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are the potentials created by all closed subshells.
The summary of the Hartree—Fock method:

I. the calculation of potentials (34)—(35) using Slater-determinants
2. the solution of (33) differential equations
3. the two itemn above are repeated it until the systemn becomes self-consistent

We aobtain the Hartree-Fock wavefunctions in numeric form. Often is useful to
express these functions in analytical form using a few parameters — they are
fitted to the numerical solution.




Example — the ground state of beryllium

Closed shells — two electrons on 1s and two on 2s spatial orbitals.
The Slater-determinant

urst(q1)  wisy(q1)  west(q)  w2s (q1)
: | 'HIH""[Q"J s (( J u“’ﬁ"‘(ﬂ") U2 g ((I’J
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(01,42, 43, 41) VAT | u1er(qs)  wisy(gs)  wosr(qs) w2 (gs) (36)
u1st(qa)  wrsy(qa) u2sr(qs)  w2s4(qa)
The V = V¢ 4 V** Hartree-Fock potentials from (29)
V=V 4+ Vi VL VL — (VER VP + VSR V). (37)

The direct and exchange potentials are given by (25) and (26).
We separate for each spin-orbital the dependence on the spatial and spin
coordinates

w151 (q) w1 (7)o (38)
Uys) (q) = wuis(r)p (39)
uzgr(q) = u2e(r)o (40)
u2s1(q) = wuas(r)s. (41)



We apply the (32) Hartree-Fock equations. The effect of V° .+ and V%5 on
w15 (7)o orbital will be the same (and the two terms are I'edu{.ed], W 11119. V I{si
leads to zero. Similarly, analyzing the effect of the direct and exchange opera-
tors on orbitals wy (r)J, uss(r)e and usy(r)7, and simplifying by the functions

depending only on spin coordinates, we obtain
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operators act only on the spatial coordinates.




The equations above are three-dimensional partial differential equations.
Howewver, the potentials are spherically symmetric, and the orbital part of the so-
lutions will be given by the spherical harmonics. For s orbitals Yyo(f) = I;’\/E
is constant and wuy 24(r) = r ' Py o,(r)Yo0. We may write the radial equations
for the radial functions /7 24, for the special case of [ =0
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——— — — + V5 (r) + 2Vi%(r) = Vi (r) | Pas(r) = Ea,Poy(r). (47)
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This systemn can be solved by the self-consistent field method.
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