I. Variational method

1 Introduction

Useful for the determination of energies and wavefunctions of different atomic
states.
H — the time-independent Hamiltonian of the system
E,, — eigenenergies
¥, - eigenfunctions
Schrédinger-equation
HY,=E,v, (1)

¢ - wavefunction with finite norm
E[¢] functional

_(9H]9)
ol =10y @

If ¢ = ¥, than E[¢] = E,, eigenstates. We prove, that if
¢=9,+09, (3)

than
dE = 0. (4)
We make the variation on (2)
[ o¢*Hodr + [ ¢*Hopdr
J o ¢dr
 (J 86" dr + [ §*3¢dr) [ ¢*Hodr
(J 69dr)” |

where we have used 6(H¢) = Hdo¢. Using (2) and making §E = 0 one obtains

0E[g] =

(5)

/ 5% (H — E)odr + / 6*(H — E)ogdr = 0. (6)
Making §¢ — id¢p we get
—i/aqs* (H — E)¢dr + i / ¢*(H — E)é¢dr = 0. (7)

Using the above two equations, we can write
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/ 56" (H — E)gdr
/ ¢*(H — E)sgpdr = 0. 9)



This should be true for any d¢, so the equations are equivalent to the Schrodinger-
equation
(H—-E)p=0. (10)

Another important property of the (2) functional is, that gives a superior
limit for the ground-state energy Ey of the system.
We expand ¢ in terms of the ¥,, eigenfunctions of the Hamiltonian H.

6= an¥,. (11)
n
Introducing this expansion to (2)

2 n (Y H|W,) > |an|” By
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where we have used HV,, = E,¥,,. Subtracting the ground-state energy FEy,
we get

By = 22010l (Fn = Bo)

E[¢] — 13
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Using E,, > Ey, the right side of the equation is nonnegative, so
Ey < Elg)]. (14)

In practice we perform the variation only for a class of functions. E.g.:
Rayleigh-Ritz method
In this case the trial function ¢ = ¢(a;, ) depends on some parameters, so

E=E(x); t=1,n, (15)

If we make the variation on the class of of the trial functions, the 6E = 0
condition is equivalent to
oE
aai -
We can use this method also for the excited states by imposing the orthog-
onality of ¢ to all states with lower energy

0, i=1,n (16)

2 The Rayleigh—Ritz method for the ground state
of the helium

2.1 Simple variational method

We apply the independent electron approximation — product wavefunction

P(r1,7m2) = Pr1s(r1)Prs(ra), (18)



Each 1s wavefunction is a hydrogenlike function with 1 parameter — the effective
charge o

3\ 2
hra(r) = (%) emor, (19)
The energy functional:
El¢] = (¢|H]¢) (20)

The Hamiltonian:

where Z = 2 is the atomic number

2.1.1 Calculating the matrix element

(i(r1)i(r2) [H[Yj (r1)9))(r2))
Let 9; and 1; being one-electron normalized wavefunction calculated in a
spherical potential. In this case

Yi(r) = Ri(r)Yim.(0,0) (22)
Yi(r) = Rj(r)Yi;m,(0,9),

where R;(r) and R;(r) are radial wavefunctions.
The matrix element can be expressed as

(@i(r1)¢i(r2) | H ¢ (r1)¢5(r2)) =
= (i(r1)ei(r2)] - %%Wj(rl)‘/)}(m» + (Yi(r)ei(rz)| - %glzbj(rl)l/)}(rz»
—<¢i(r1)¢§(rz)|%I%(rl)%(rz» - <¢i(r1)¢£(rz)lél¢j(r1)¢} (r2))
+<¢i(r1)¢£(r2)|éWj(rl)@b;' (r2))- (23)

In the first 4 terms the operator acts only on the wavefunction of one electron,
so we can separate the integrals for the coordinates of the 2 electrons

(thi(r1)i(r2) | H|tj (r1)1);(r2))
v; PR 1
= (i(r1)| - 7|¢j(1‘1)>5i'j' + (¥i(r2)| - 7|¢j(1‘2)>5ij
e 5 (e} = (0 Cra)] 1 )y
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The integrals containing 1/r, k = 1,2 can be easily calculated

1 o0 1
el nd) = / rdn R () Ry / A6 Y, () Vi m, (i)

e 1
/ r%drkR;(Tk)ERj(rk)(slilj(Smimj- (25)
0

In general numerical integration is needed for the calculation of the radial matrix
elements.

If the wavefunction is calculated in a —a/r;, Coulomb-potential and i = j,
than we can calculate analytically

a

o 1
2drL R (re)—R;(ry) = — 2
| rtanRi o R = 5 (26)

The matrix elements of the kinetic energy operator—V3/2 can be calculated
directly, or if ¢; is eigenfunction of —V?2/2 + V(r),) with eigenvalues E; then

(ilri)| = S [5(e)) =
= (Yi(ri)| - % + V()]s (i) = (i(r1) [V (re) |15 (1))
= (i ()| Ej [ (ric)) — (i (ra) [V () [0 (rc))
= Ejdij — (i(ri) |V (r1) |10 (r))- (27)

If the potential is Coulombian —a/ry, then the eigenvalue of the energy is
—a?/2n?%, and

(a(mi)| = (i) = 226zg+a<wz<rk>|—|¢g(rk>> (28)

The matrix element of 1/r;2 — we expand the potential in terms of Legendre
polynomials

o1 i iP (cosh) (29)
rp |ri—ra| =0 l>+1 l ’

— multipole expansion We express P;(cosf) in terms of spherical harmonics

l

4 R R
Pi(cos6) = m—jl 3 Vi (1) Yim(£2). (30)

m=-—1

o0

Z

T12 l+1 Z Y}m rl)}/}m(r2) (31)



Further
1
(¢i(r1)¢§(r2)|a|¢j(r1)1/1}(r2)>
S Y 2R B [ drariR ) S R
—Xl:%—H | dnn F(r)R;(r1) A i(r2)7_l>T i (r2)
D 3Y RO AR AT

X / Vi1 (B2)Yim (B2) Y1yt (£2)d 2. (32)

The integral of the product of 3 spherical harmonics is

. (a R o 7o @+ D41 0 Alama
/Ylama (r)xflbmb (r))flcmc (r)dr = \/ 47‘-(210, + 1) C;btg)lcocllbrznblcmc’ (33)

— C — Clebsch—Gordan coefficient In order to have nonzero terms 1, should be
the vectorial sum of 1, and 1., meaning that

Ma = Mp + Me, (34)

and
o=l <y <lo+1. (35)

Cll:(?zco is nonzero only for even I, + I + I,
The matrix element of 1/r1» will be nonzero if

mj—m; = mj—m)} (36)
=05 < L+l (37)
-l < L+l (39)

L+l +1+1; even (39)

In these cases we obtain

(iea) b ea)| - 5 ) ) =

min{li+lj,l;+llj}

oo o0 Tl
=Y [T annmeonoe [ ddr ) )
l:max{|li*lj\y‘l;*l;‘} 0 ’ =
QL+1)QL+1) 10 o 1jm; lim;
><\/(2l]~+1)(21]'.+1)Cl°li0015190 2 Cmlomton Conoma (40

mimjm;m};



