Continuation of the simple variational method for
the He

The matrix element can be calculated as
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We obtain R;s from the 115 by separating the Ypq = 1/+/4w orbital part.
Ris(r) = 2a°/%e07. (2)

Introducing this function, for the E(a) we obtain
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Performing the integrations
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We obtain the energy minimum if
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The energy of the ground state will be
5\ 2
Eo, = — (Z - E) = —2,8477 hartree = —77,456 eV (8)
While the experimental value is
Eqg, = —2,904 hartree = —79,00 eV, (9)



The variational method using more parameters

Hylleras
s= r+r; 0<s<o0
t r1—7T2; —o00 < 00
U = 712; 0<u<o0

Trial function

n
_ _—as 1427k
Ostu =€ E Ci2j kSt u”.
i,j,k=0

Ci2jk, O - parameters
Frankowski and Pekeris - 1024 parameters

Ey = —2,90372437703 hartree.

— exact value

1.3. The excited states of He
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Beside the energy minimization we have to impose additionally the orthogonality

condition to the ground state, and to all states with lower energy.

In many cases orthogonality comes from the different symmetry properties

of the wavefunctions.

238 triplet state
spin dependent part — symmetric
spacial part — antisymmetric

¢235(7“1, 7‘2) = N[Uls(Tl)U2s(T2) - U2s(7“1)u2s(7"2)],

Typical trial functions

uis(r) = e
vas(r) = <1 — %) e_BQ_T.
The energy function
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Variational conditions
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We obtain @ = 2,01 and = 1,53
Similar situation with 2' P and 2°P states

@213 p(r1,T2) = Nyfu15(r1)vapm (r2) £ vapm (r1)uis(r2)].

(20)



with m = 0, 1.
us(r) = e " (21)
Vapm(r) = 1€ 2 Yipn(F). (22)

2'P — a=2,00 and 8 = 0,97,
2°P —a=1,99 and 8 = 1,09.

In case of the 2 S state we have to impose orthogonality to the ground state.
We take the trial function

Po15(r1,72) = Nlugs(r1)v2s(r2) + vas (r1)uas(r2)] (23)

and orthogonalize it

G215 = dyig — P11s(P1rs|Phis) (24)

1.4. The Hartree method

General method for multielectron atoms
IEA - instead the real Hamiltonian
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we take a sum of one-electron Hamiltonians
N

Hp=Y [—%V% - rg + V(ri)} : (26)
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V(r;) — screaning potential created by the other electrons.
If we write the Schrodinger equation in this approximation

Higé(ra,re, ..., rn) = Eipg(ri,re,...,In), (27)

the equation can be separated into N one-electron equations
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_Evf - ’I“_ + V(I‘i) Uq; (ri) = €iUq; (ri)v (28)
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with
O(r1,r2, ..., IN) = Ug, (T1)Ug, (T2) -+ Ug  (TN)- (29)

In order to find the wavefunctions and the energy we use the varational method
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The wavefunctions are normalized

(ua; ()|tig; (r)) =1;  i=1,N. (31)

We can write
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Where
1_, Z

oy = (o, ()| (=597 = =) Jua, (o). (33)

one-electron integral, and

1

Jaiaj = <U’ai (ri)ua]‘ (rj) | T_ |uai (ri)ua]. (rj)>' (34)
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Coulomb-integral.

We have to find the minimum of the functional with a supplimentary con-
dition

6E[¢] = 0; (Uq,|ta;) = 1. (35)
Using the Lagrange multiplier method
S(E[¢] — ZEal Ua, |1a;)) = 0. (36)

E,, — Lagrange coefficients As we have shown in the first chapter, it is sufficient
to make the varations for the bra vectors
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—E4, (dug;|uq,)| = 0. (37)

Changing ¢ and j in the second sum of the Coulomb-integral, one can write
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v2 -= + Z ta, | |ua] — Eq, | |ua,) = 0. (38)



This should be valid for any du,,, so we obtain

{—%V? - g + Z(uaj|%|uaj >} Uq; (ri) = Eaiuﬂi (ri)’ (39)
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where i =1, N
— Hartree equations

Electron i is moving in the field of the nucleus —Z/r; and the field created
by the other electrons 3, (uq;|1/7ij|ua;) So Eq, is the energy of electron i in
state a;.

Solving this system is much more complicated than solving the usual Schrédinger
equation. The potential depends on the u,, functions, so these integro-differential
equations are coupled.

Solution: self-consistent field method

e calculating the potential using some u®  trial functions
J

¢ solving the equations using these potentials obtaining u}lj
e repeating the procedure until the equations become self-consistent

The Hartree method is not consistent with the Pauli exclusion principle
because the (29) function is not antisymmetric.

Because different electrons generally move in different potentials, the Hartree
functions usually are not orthogonal to each other.



