1.6. The Slater-determinant and the angular mo-
mentum

A

L — the total orbital momentum of the electron system

S — the total spin

L, and .SA’AZ — the 0z components

The L2, L., S? and S,operators commute with the nonrelativistic Hamilto-
nian of the system, so they have a common set of eigenstates.

As a consequence ¢ trial functions used in the Hartree-Fock method should

be the eigenfunctions of these operators.

I?¢ = L(L+1)¢ (1)
L.¢ = Mpé (2)
S%¢p = S(S+1)¢ (3)
S.¢ = Ms¢. (4)

The Slater-determinants do not obey always these requirements. Because these
¢1 determinants have been constructed from the spin-orbitals of each electron,
these are the eigenfunctions of the one-electron angular momentum operators.

Boy = Lli+ 1) (5)
linbr = mah (6)
1 = si(si+ 1) (M)
S5i:01 = misd1, (8)

where i = 1, N and N being the number of electrons.

We want to construct from the ¢, Slater-determinants wavefunctions be-
ing eigenfunctions of the angular momentum operators for the whole electron
system. To perform, we have to make a transformation from the one-electron
angular momenta representation to the total angular momentum representation.
This task can be done by the coupling of angular momenta.

Let’s take a simple example of system formed by two particles with angular
momenta [y and 2, the total angular momentum being L. The angular momen-
tum state of the system in the one-particle representation may be written with
the vector |l3my1lamy2), which corresponds to the wavefunction. In the total an-
gular momentum representation the system can be described by the |l;lo LML)
vector, which usually cannot be expressed by a single Slater-determinant, but
it obeys the (1)—(4) conditions. The relationship between the two different rep-
resentations is the following

[lilaLMp) = Z [l lomya) (lmya lomya |l le LM 1)

mip1mi2

Z Cﬁ%ﬁlgmlzlllmllbmm)‘ (9)

mi1miz



Here we have used that the sum of the projectors |lymyqlomyz){limyilamys| for
every possible m;; and m;» magnetic quantum numbers with my; + mys = My,
projects to the subspace generated by the |l;lo LML) vector, so it does not change
this vector. The occurring overlap integrals are the CZI: %fl lymy, Clebsch-Gordan
coeflicients.

If we take into account also the coupling of the spins, the transformation
between the total angular momentum representation L and S and the one-
electron representation may be done in the following way

_ LM SM,
|l1l2LSMLMS) - Z Z Cllmlﬁlgmlzcslmi132ms2

mp1mi2 Ms1Ms2

X |l1m11l2m1251m3132m52), (10)

where s; = s2 = 1/2.

In case of the multielectron atoms the above coupling of the angular momenta
has to be done several times. Finally, the state of the system will be described
by a linear combination of the Slater-determinants. The coefficients of these
determinants depend on the coupling of the angular momenta.

1.7. Multiconfiguration wavefunctions

The Hartree-Fock method has been an IEA method, each electron moving in a
field created by the other electrons. The electron system could be characterized
by a single configuration, meaning that one could tell the number of electrons
in each one-electron state. The interaction between the electrons not included
in the Hartree-Fock approximation is the correlation energy

Ecorr = Eexact — EHF.- (11)

This correlation energy has a negative value.

This correlation interaction has been taken into account in the Hylleras-type
description of the helium atom. However, this method should be very compli-
cated for many-electron atoms, because we would have N (N —1)/2 interactions
between the electrons, if N is the number of the electrons.

In the case of atoms with more than 2 electrons is more practical to use a
trial function written as the linear combination of more configurations, and the
coefficients of these configurations are taken to be variational parameters.

The method is based on the principle that any wavefunction may be ex-
panded in terms of a basis set

2= it (12)

Usually the {¢;} basis is formed by the eigenfunctions of an approximate Hamil-
tonian, which can be written as a sum of one-electron operators. The basis is
usually infinite. In practice we choose a basis set for which the expansion is
rapidly convergent, and the coefficients ¢; are negligible for greater values of i.



Let’s keep the first n terms

¢ = Z cidi (13)
The functional (®|H|B)
= e o

will depend on n linear parameters

(il HI Y ci05) 3o ciciHi

E(clac2a"'acn): - * . (15)
(22 cidil 225 ¢ib5) >4 €iciSij
Here we have introduced the
Hij = (¢i|H|o;) (16)
matrix elements and the
Sij = (#ild;) (17)
overlap integrals.
Using the Rayleigh—Ritz variational method we can write
OE ;i Hijei (32, jciciSiy) — 225 Sijei (X j ciciHij)
- = » 5 =0, (18)
c; (ZH c; ¢jSi)
where i = 1,n. Using the (15) formula we obtain
ZCjHij — chsijE = 0, (19)
J J
or
> ci(Hij — S;E) =0, (20)
J

with 4 = 1,n. If we have an orthonormal basis set S;; = d;;, and the linear
equation system reduces to an eigenvalue problem

> ¢j(Hij — 65E) =0, (21)
J
or in matrix form
H,-FE Hy Hyp, &1
Hy, Hy - E --- Hs, c2
. . . . =0 (22)
Hnl Hn2 Hnn —-F Cn



The system has nonzero solutions only if the determinant of the matrix is zero

Hll -E H12 e Hln
H21 H22 -E -- H2n
. . _ =0. (23)
Hnl Hn2 e Hnn -E

From this nth degree equation the E eigenvalues can be obtained. Introducing
the energy values in the (21) system, one can get also the ¢; coefficients and the
eigenfunctions.

We remark, that in the(13) series one may have only those ¢; configurations
which ave the same symmetry as the state a ®, including the angular momentum
state.

We take as an example the 1'S, ground state of the helium atom. We
construct the state only from configurations with zero total spin and angular
momentum, and the wavefunction depending on the spacial coordinates is sym-
metric under the interchange of the two electrons. So we can exclude from the
beginning the 1s2p and 2s2p configurations.

Let us take the state as a linear combination of 3 configurations

118y = ¢1(15%) + ¢2(1525) + c3(2p?). (24)

Each configuration has to be written in a way to have the symmetry, spin and
orbital momentum of the state. The first configuration is simply

(15%) = 15(ry)1s(rs). (25)

The second one has to be symmetrized

(152s) = %[15(7«1)23(73) + 25(r1)18(rs)]. (26)

In the third case we have to find a linear combination of the products to obtain
a total orbital momentum L = 0. Using the (9) expansion we obtain

[1100) = C9 |1-111) + C700/1010) + CPY; 4 [111-1), (27)
or including the numerical values of the Clebsch-Gordan coefficients

(2p°) = %[QP—l(Pl)QPH(I‘z) — 2po(r1)2po(r2) + 2p11(r1)2p-1(r2)], (28)

where the low index of the orbitals stand for the magnetic quantum number.



2. The stationary perturbation method

2.1. Electrostatic corrections to the Hartree-Fock
method

These electrostatic corrections arise from the coupling of the orbital momenta
and spins of the individual electrons to the total orbital momentum and spin
of the atom. The orbit-orbit and spin-spin interactions have an electrostatic
nature, while the spin-orbit interaction is a relativistic effect. We consider the
Russel-Saunders (LS) coupling and neglect the spin-orbit interactions.

If we want to obtain the energy of the atom depending on the coupling
of the angular momenta (or the values of L and S) we have to choose the
wavefunction in order 0 to be the eigenfunctions of L2, S2, L, and S.. The
first-order perturbational correction to the energy will be

B = (klyly - - INLS M, Mg|H'|klyly - - - INLS My Ms). (29)

The H' perturbational potential contains the electron-electron interactions. The
|klils - - - Iy LS M1 Mg) states may be expressed as a linear combination of Slater-
determinants.

With these kind of perturbational calculations we can deduct the Hund’s’
rule, meaning that the energy of a given configuration decreases with the in-
creasing value of S. Similarly, it can be shown, that for the same value of spin,
the energy is decreasing for increasing value of L.

Let’s apply this method for some of the excited states of the helium.

For a triplet state (S = 1) we write the unperturbed wavefunction as

M
0LLIM Ms) =% CyVs 1 100lmisdms dmss) (30)
Ms1Ms2
Because I; = my; = 0, the total orbital momentum equals the orbital momentum
of the excited electron I = L = I, mj2 = M = m. Look first at the case
Mg ==+1
1+1
[0lllmyy £1) = C’%i%%i%mOlm% +11+1)
= [00imi +1il+1). (31)
The sum over mg;,2 reduces to one term, so the Slater-determinant has the

required symmetry. Noting with x the part of the orbitals depending on the
spin, we obtain

Ui (g, ) = 1| Yroo(ri)x+1 (1) Prim(ra)x+y (1)

B V2 | Y100(r2)x+1(2)  Ynim(r2)x.1(2)

= %[%00 (r1)%nim (r2) — Ynim (r1)P100(r2)]
XXx1(1)x+1(2)- (32)



If Ms =0, we get

0iim0) = C1% 1 1 |00imiii-)
+C%?—%,%,%|00lm%_%%%>
1
= 75 [00im} 35-5) +00im3 -5 5 3)] o

where we have used the numerical values of the Clebsch—Gordan coefficients
Writing the Slater-determinants in detail

) %(1) ¢nlm(r1) %(
$100(r2)X41(2)  Prim(r2)x_1(2)

|
1) nim(r1)xy 1 (1)
) Ynim(r2)x41(2) H

1
Tio(qi,q2) = 5[

= %[1&100 (r1)Ynim (r2) — Ynim (r1)100(72)]
ol s (Do @)+ X (D @) (34)

As one may observe, the spin-dependent part of the wavefunction is symmetric.
For the singlet case (S = 0) we get for the expansion of the state

ouimoo) = ) O 1 |00Um 31 S50)
Ms1Ms2
= Chy3-31000ms 5 5 -5)
+OP4.4,41000m3 -5 5 )
1
= 7 [[00im3 3§ -1) —|00im} -5 § 4)] (35)

Detailing the Slater-determinants

1 H 1/1100(7‘1;X+

(1) wnlm 1'1
Too(q1,q2) = ¥100(r2) X4 1 (

x-1(1)
2) 1pnlm X %2 ‘
Y1o0(r1)x -1 (1) Ynm(re)xy1(1) H
P100(r2)X-1(2)  Ynim(r2)xy1(2)
= %Wloo (71)Ynim (r2) + Ynim (r1)P100(72)]

1
x ol (DX 4 () = o3 (1) 42)] (36)
So the spin-dependent part of the wavefunction is antisymmetric, while the

spatial part is symmetric. The (¥gprs |H'|¥sn) correction will depend on S.
The higher the S, the lower will be the energy.



We give an example also for the dependence of the energy on L. Let’s
consider an atom with two p electrons on its outer shell. If these are equivalent
(has the same principal and orbital quantum numbers), the possible terms are
18, 'D and 3P. Taking into account the previous discussions, the triplet state
will have the lowest energy. We will compare the energy of the two singlet terms,
in order to investigate the L-dependence

We may take only the spatial part of the wavefunctions

[11LML) = Crr o Imyg Imys). (37)
mi1,mi2
IfL=0 .
|1100) = —= [|111-1) — [1010) + [1-111)]. (38)

V3

In the H' perturbational potential only the term containing the interaction of
the two electrons 1/r12 will depend on L.

1 1 1 1
(1100)——[1100) = - |2(111-1|—|111-1) + (1010|—[1010)
T12 3 T12 T12

+2(111-1|i|1-111) — 4(1010|i|111-1)] i (39)
T12 T12

The matrix elements can be calculated with the known method. For the first
two terms from the expansion of 1/r;2 remain only I = 0, 2, my; = 0 for the
third term [ = 2, m; = 2, while for the last one [ = 2, m; = 1. Performing the
calculations we get

1 > * 1
(1100]—|1100) / drlrpr(r1)2/ dr;;r%Rp(rz)—
T12 0 0 >

2 o0 oo ,,.2
+ —/ drlrpr(r1)2/ drgrng(rz)—?f. (40)
3 Jo 0 rs

If L = 2, the form of the (37) expansion depends on the value of M. But
the energy without any external field cannot depend on M|, and we can choose
a value, for example My = 2

|ll = ].,lz = ].,LZ 2,ML = 2) = |l1 = 1,m11 = ].,lg = 1,m12 = ].), (41)

and the matrix element of 1/r12 will be
1
(h=ll=1L=2M =2 —[h=1b=1L=2M=2) =
12
1
=(h=1Lmyp=1LlL=1mpy= 1|r_|l1 =1,mp =1l =1mp=1)
N . 12 ,
= / drlrpr(T1)2/ drzrng(rg)—
0 0 r>

1 oS} o] 2
+—/ drlrpr(r1)2/ drgrng(rg)r—; (42)
25 /o 0 TS



All radial integrals are positive, so the energy of the L = 2 state will be lower
than that with L = 0 because 1/25 < 2/5.



