3. Time-dependent perturbation theory

We plan to investigate the electron transitions in atoms induced by an interac-
tion with an external time-dependent potential (charged particles, electromag-
netic waves etc.) We assume, that the interaction with the external field is not
too large, and one can apply for the transition perturbation methods.

3.1. The basics of the method

We assume that the H (¢) time-dependent Hamiltonian of a quantummechanical
system can be written as a sum of two terms

H(t) = H° +V(1). (1)

Here H° does not depend on time, and its eigenstates and eigenvalues are known.
V(t) is a time-dependent perturbation (interaction), acting between to and .

Before ty the system is in an eigenstate of H°, denoted by i. Due to the
V (t) perturbation it goes to another eigenstate, f. The evolution of the system
between ¢y and ¢ may be described by the U(t,to) evolution operator. The
wavefunction of the system at moment ¢t will be

|®) = U(t,t0)]0)- (2)

One may write for the evolution operator the differential equation

LUt 10) = HU(t,10) Q
which is equivalent to the time-dependent Schrédinger-equation.

After the system has evolved to state ¥(t), and the perturbation stops acting,
the system has to go to an eigenstate of the H°. The probability of a transition to
a certain state f depends on the (f|¥) overlap integral, which is called transition
probability amplitude. The transition probability can be calculated as

wisg = (FI)* = [FIU (2 to) i) (4)

Further instead of the usual Schrodinger picture we use the interaction or
the Dirac picture. In this case the time dependence of the Ur(¢,tp) evolution
operator contains only the influence of the perturbation, and does not contain
the periodic factor present in the Schrédinger picture even for time-independent
Hamiltonians

UI(t7 tO) = UOT (tv tO)U(tv tO)v (5)

where U%(t,) is the evolution operator of the system in the absence of the
perturbation. The U°(t, () satisfies the

S0t t0) = HOU (1 o) (©



differential equation, and the solution may be written as

UO(t, tg) = e " (t—t0) (7)
It can be proved that
.0
z&UI(tatO) = Vi(t)U(t, to) (8)
where
Vi(t) = UT(t, o)V () U (t, o) (9)

is the perturbation potential in the interaction picture. The eigenfunctions of
HPO in this interaction picture are identical to the stationary wavefunctions.
Integrating formally (8) between to and ¢ we obtain

t
Ur(t,to) =1—i [ dtiVi(t1)Ur(t1,t0), (10)

to

1 is an integration constant obtained by the
Ur(to,to) =1 (11)

initial condition.

The (10) integral equation may be solved by the iteration method. Let’s
take as the first guess for the Uy (t1,to) evolution operator 1. In this Oth order
approximation the perturbation interaction is neglected, the system remains
unchanged. In the first order we get

t
Ub(t,te) =1—1d [ dt1Vi(ty) (12)
to
For the second-order approximation we insert the operator obtained in first
order into the right-hand side of (10)

t t ta
Ui(t,to) =1—i | daVi(ty) + (=i)? [ dt2Vi(ta) [ dtiVi(ty), (13)
to to to
and so on. By this method we obtain the perturbation expansion of the evolution
operator

o0
UI(t7t0) =1+ ZUI(n)(t7t0)7 (14)
n=1
where U I(") is the nth order correction to the evolution operator. These correc-
tions may be obtain by the integrals

t tn
UI(n) = (_’l)n dthI(tn) dt”—IVI(t”_l)
to tO

/t it Vi (1) /tZ A Vi (h). (15)

to to



We write the interactions using (9) into the Schrédinger picture

t
UM = (=) | dtn U (b, 1)V (tn) U (tn, to)
to
tn
X Atn—1U (tn—1,t0)V (tn=1)U° (tn—1,t0) - - -
to

ts
x [ dtaU%(ta,t0)V (t2)U° (22, to)
to

ta
X dtlUOT(tl,to)V(tl)UO(tl,to). (16)

to

Writing the U° operators into the form (7), the moments ¢y reduce

t
UM = (=)™ [ dtne TV (ty)em b
to
tn O JEI°
X dtn,1€Z t’"_l‘/(tn,,l)€_Z tn-1 ...

to
t3 .70 p— t2 p— pp—

X dtret tZV(tg)e_’H b2 dt; et th(tl)e_’H oo
to to

The above expansion is equivalent to the Born series.
Let us write the transition amplitude in different approximations. The total
amplitude is

a = (f|Ur(t, to)|i)- (18)
While the nth order amplitude
™ = (F|U™ (¢, to)1i). (19)
In Oth order
a® = (fli) = biy, (20)

because of the orthogonality of ¢ and f we do not obtain transition.
Writing the first order amplitude we take into account that ¢ and f are the
eigenstates of H® with eigenvalues E; and E;

t
—i [ dty (fleE 1V (t1)e"H i)
to

= / B0 (711 (1) ) (21)

to

a®

The expression above means that the perturbation causes a transition in one
step from the initial state to final state in moment #;.
The second-order amplitude may be calculated as

t ta
a® = — [ dto(fleF PV (ta)e H | dti e H 0V (t)e  H ). (22)
to to



Here taking into account the

PLICES! (23)

k

closure relation, the complete system of the eigenstates of H° is inserted into
the expression, taking into account that the eigenvalues of H? are E}

t
a® = — [ dta(fleBrV (ty)e 2
to
12
x STIRNK| [ dte TV (ty)e it i)
k to

t
3 [ EE v )
k to

to
x [ dt BB BV (11)]i). (24)
to

Interpretation: the perturbation causes a transition in ¢; into the intermediate
state k, and after that in moment ¢, causes another transition into the final
state. Because intermediate states are not measured, we have to sum over all
possible intermediate states (paths).

3.2. The cross section

A scattering process or an electron transition caused by a projectile can be
characterized by the cross section.

Let’s consider a scattering process, particles X being the target. This is
bombarded by a monoenergetic beam of projectiles Y. Jy — the flux of the
projectiles, the number of the incident particles per unit of time and per unit
of perpendicular area. We neglect the interaction between the projectiles.

First we take into account only elastic scattering. dNy is the number of
scattered particles per unit of time in the direction (2, element of solid angle
d2. This quantity may be written

dNy(Q) = JyS(Q)dq. (25)

where X(€) is a characteristic of the target. If we have in the target Nx identical
scattering centers (target atoms), and we assume that there in no coherence
between the scattered waves by different centers, and each projectile is scattered
only once, the number of scattered particles will be proportional to the number
of target atoms.

dNy(Q) = JyNXo'd(Q)dQ, (26)



Here 04(f2) is an area-like quantity, and is a characteristic of one scattering
center. This is the elastic differential cross section. We introduce o, the total
differential cross section

__do. dNy ()

= %% _ @AW 2
94=00 T Jy NxdQ (27)

and
Oe = /ad(Q)dQ. (28)

This quantity is approximately equal to the area of a circle with the radius
being the range of the potential between the two particles.

In the case of an inelastic collision the target quantum state is changed, from
i to f. The characteristic cross section for this transition may be written

Nz’—»f

isf = . 29
Oi—f JY NX ( )
We also may define several differential cross sections. For example

d2n71 i

dQy ---dQndE; ---dE,_1°

Further we assume, that we have only one scattering center, which is bom-
barded by a monoenergetic beam of identical particles. The quantum state of
the projectiles differ only in the impact parameter relative to the target.

Let w(i,®» — f) be the probability of the transition ¢ — f for impact
parameter b-tv If in the unit of time are scattered Ny particles, the number of
1 — f transitions are

Ny
Nisg =Y w(i,®y; — f) (31)
j=1
If Ny — oo, the sum is transformed into an integral over a perpendicular plane
to the beam direction

Ni_,f = /d2bew(i,<I>b — f) (32)
We assume a homogeneous flux
Niyy = Jy/d2bw(i,<1>b = f). (33)

Comparing (33) with (29) and taking into account that Nx = 1, for the cross
section we obtain

oig = / Pbwli, oy — f). (34)

We will use this formula for further calculations. Similarly, the (30) differential
cross section may be expressed

d2n—1

Oi—y 2 . '
= [ d°b Py — f, P 35
dQq ---dQ,dE; ---dE,_1 / w(i, By , @), (35)

where |®') is the final state with a given energy and angular distribution.



3.3. Electron transitions induced by charged par-
ticles

If the projectile has large energy, it may be described classically. For this ap-
proximation to be valid the de Broglie wavelength of the projectile should be
much less relative to the atomic dimensions. If also the energy and momentum
transfer are negligible to the projectile energy and momentum

i & pyr >> V2MAE, (36)

(p; and py being the initial and final momentum, M the mass of the projectile,
AFE the energy transfer), the movement of the projectile is approximated by
a straight-line trajectory and constant velocity. This approximation is called
semiclassical approximation (SCA) or impact parameter method (IPM)

Taking into account (4) and (34) the cross section for transition i — f may
be obtained

sing = [ Eblais P

[ IV (o0, ~o0) ) (37)

Quantum states ¢ and f, and the Up(+00, —00) evolution operator are for the
electron system. The projectile-electron interaction is taken to be the pertur-
bation.

One-electron transitions

We assume the independent-electron approximation, and take into account only
one active electron. If the energy of the projectile is much larger relative to
the interaction, we may apply first-order perturbation theory. Usually this is
valid for projectiles above 100 keV/usz energy, Z, being the charge of the
projectile.

Let us take an excitation process. The amplitude in first order may be
calculated from (21). The perturbation potential is the Coulomb-interaction
between the projectile and the active electron

_Zp Zp

V(t) = Rpe(t) = _lR(t) — rlﬂ (38)

R, being the distance between the projectile and the electron, R and r the
position vectors of the projectiles and the active electron, respectively. Taking
the origin in the nucleus, we can write

R = b+z (39)

R = Vb2+22 (40)



We change the variable in the time integral from (21)
z=vt; dz=vdt, (41)

and we obtain for the first-order amplitude

Z +eo z'—Ef_Eiz 1 y
a(l) = z—p/ dze v <f|m|’l) (42)

UV J_oo

The potential is expanded into the multipole series

1 _Oo 4r L - Y )
m_lz_;ﬂ-i-lrl;l Z tm (R)Yim (£), (43)

and we separate the orbital part of the electron wavefunctions
i = Ri(r)Yim(®) (44)
f= Re(r)Yim, (%) (45)

Using the analytical formula for the integration of the product of three spherical
harmonics, we obtain

Z 4 @CL+1)(2+1) 40
1 - ;Zr s
“ D IF An(20; +1) Lo

lfm_f Hoo Ep—Ei EN
% Zy*
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Let us look now to the ionization process. The ejected electron may leave
the atom with different energies and angular momenta. It is usual to expand
the final state into a series of the eigenstates of L? and L, (spherical harmonics)

Zzl,emle (pr) ZYW )Yi,mj () (47)

This expansion is called the partial-wave expansion of the ejected electron, d;,
being the phaseshift, p the momentum of the electron Ry, (pr) the radial function
of the partial wave. For plane waves (no interaction) the partial waves are the
spherical Bessel functions, for purely Coulomb potential may be expressed by
the Coulomb waves

21 Z
le(p'f') = _I;Ef(_ghpr) (48)

while in other cases has to be obtained numerically (by solving the radial
Schrédinger equation.



Using the same method as for the excitation we can obtain the amplitude
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and the differential cross section in terms of the direction and magnitude of the
final momentum of the electron

d o
/ &b| Y af) (). (50)

lymy

If we need the total cross section we have to integrate over the momentum vector.
Using the orthonormality of the Y}* ( ) spherical harmonics, integration over
the angles is easily performed, and We get

o= /de/ Phdp Yy lafl), (), (51)

lymg

where the amplitude does not contain the Yl’;mf(f)) functions, and does not
depend on the direction of the momentum. The energy of the final state may
be written as

; (52)

or
Ef—E,-:I+%, (53)

wherel is the ionization potential.



