3.4. Electron transitions induced by electromag-
netic radiation

Except for very strong laser fields the interactions of the electrons with the
external electromagnetic field may be treated as a perturbation.

The Fermi golden rule

Consider the first-order probability amplitude of the ¢ — f transition
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where wy; is the characteristic Bohr angular frequency of the transition, in
atomic units Ey — E;, while V};(t') stand for the matrix element of the pertur-
bation potential.

If we take a simple case, where the perturbation potential is constant between
to = 0 and ¢, and zero otherwise, the integral may be easily performed.
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and obtain for the transition probability
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has a sharp maximum around wy; = 0 (with a peak value ¢*/2 and 27/t half-
width). As a consequence the most probable transitions will be those with wy;
not larger then dwy; = 27 /t.

Let us investigate the transition probability as a function of time. If the
energy in the transition is conserved, meaning wy; = 0, then

wyi(t) = [Vt (5)

If wy; # 0 the transition probability will oscillate in time as the function
F(t,wy;). For time intervals longer than the 27 /wy; period, the mean value
of the function is 1 /wfci, and the transition probability will oscillate around the
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Let us consider further the (Ey — €, E¢ + €) energy band around the final
state energy, where the density of states

N

=5 7)

pr(E)
is considered to be constant, N being the number of the states in the band. The
transition probability to a state f’ from this band is obtained by the integral of
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where we have taken the matrix element V}/; to be constant in the considered
energy interval. Further we assume the perturbation long enough for
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Because the function F(t,wy;) has important values only in the dwy; interval,
the integral over (—e, +€) may be extended without significant error to infinity.
On the other hand, only those transitions are probable, for which the energy is
conserved within the 6E = 27/t interval given by the uncertainty principle, so
E; =~ E;. We obtain
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The transition probability will be
wyi(t) = 2m|Vyil” g (). (11)
Thus we get for the transition probability per unit of time
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The formula above is called the Fermi golden rule. It was derived for a con-
stant perturbation potential, but is valid also for any kind of electromagnetic
perturbation.

The interaction between a charged particle and the electro-
magnetic radiation

The Hamiltonian of an electron in electromagnetic field may be written as
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where A is the vector potential, while Vg stands for the scalar potential. Ap-
plying to a wavefunction ¥(r,t) we obtain
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Using VA = 0, the second and third term will be the same. For electromagnetic
fields of normal intensity we may neglect the term containing A?. We separate
the unperturbed Hamiltonian and the perturbation

H° = —%V2+Vs (15)
V(t) = —iAV. (16)

The probability amplitude in first order will be
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If A describes a wave packet, it may be written as a superposition of plain waves
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Here k is the wave vector, € the polarization direction. The amplitude for a
given plane wave with angular frequency w may be written
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The integrals over time may be written analytically
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The length ¢ of the pulse usually is much longer relative to the 27 /w period of
the oscillation. The functions above for large values of ¢ has sharp maxima for
wy; = w and wy; = —w. The first case corresponds to the absorption, while the
second second case to the induced emission. The two equations express the The
Bohr frequency condition. Further we discuss separately the two terms, because
if one has important values, the other is negligible.



In case of the absorption for a given angular frequency close to wy; the
transition probability is
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Here we have use the already defined function
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with Aw = w — wy;. We not the matrix element with
Myi(w) = (fle™"eVi). (24)

If the components with different frequencies of the wave packet are not coher-
ent, the transition probability may be calculated as an integral over w for the

transition probabilities of the components.
Because |a£,1)|2 has important values only in the small dw vicinity of wy;

(for the properties of function F(t, Awy;)), we perform the integral only for this
small interval
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Ag and My;(w) is taken constant in dw, and the integral of F(t,w — wy;) may
be extended to infinity
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We obtain for the transition probability
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The transition probability per unit of time will be
Wi = 2mAg (wys) [ Mpi(wpi) (28)

Further we derive the formula for the cross section of photon absorption In
the formula for the cross section
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with IV, = 1 we multiply the nominator and the denominator by wy;, obtaining
in the denominator the radiation intensity. This may be written in SI

I(w) = 2eow?cAi(w), (30)

or in atomic units 1
I(w) = 2—w2014(2,(w). (31)
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The transition probability per unit of time may be written

I(Wfi)

Wi = dm? —5= | M yi(wyi) [*. (32)
aw$;
The cross section W
WriWrq
of = . 33
5 T )

In the nominator we have the absorbed energy per unit of time. Using (32) we
obtain for the cross section
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were we have introduced fi fine structure constant & = 1/c =1/137 .
Similarly we perform the calculations for the induced emission with wy; ~
—w. The transition probabilities and cross sections are obtained the same
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We have to calculate the matrix element My;(wy;) using (24). In many
practical cases is useful to perform the Taylor expansion
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In the optical spectrum the wave number is of the order of magnitude k =
27/X ~ 10" m~1, while the atomic dimensions are around r ~ 1071° m. In
these cases kr ~ 1073, and the exp(ikr) may be approximated by 1. This is
called the dipole approximation.

In dipole approximation
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where we have used
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The formula above is written in Coulomb or velocity gauge.
Sometimes is useful to write the matrix element also in the length gauge.
For this we use the Heisenberg-equation
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We may express the My; matrix element in terms of the matrix element of
Mfi = —wf,-érﬂ. (42)

The transition probability in dipole approximation will be
T(wes
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The érg scalar product may be written as rg cos @, where 6 is the angle between
r and €. For isotropic non-polarized radiation the angle varies randomly. The
transition probability for caused by the unpolarized radiation may be obtained
by averaging over all possible angles
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The approximation above is called dipole, because the ra matrix elements are
proportional to the matrix elements of the electric dipole

Dﬂ = —TIf. (46)



