SYLLABUS

i mornadon regaranig de programme			
1.1 Higher education	Babes-Bolyai University		
institution			
1.2 Faculty	Physics		
1.3 Department	Physics		
1.4 Field of study	Physics		
1.5 Study cycle	Master		
1.6 Study programme /	Computational physics		
Qualification			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	e dis	scipline	Nu	merical computation	ns in	atomic physi	CS
2.2 Course coor	din	ator		Ladislau Nagy			
2.3 Seminar coo	ordi	nator		Ladislau Nagy			
2.4. Year of	1	2.5	2	2.6. Type of	E	2.7 Type of	Speciality
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:				•	hours
Learning using manual, course support, bibliography, course notes					22
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					32
Tutorship					10
Evaluations					
Other activities:					
3.7 Total individual study hours		84			1
3.8 Total hours per semester		140			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	•
4.2. competencies	•quantum mechanics, atomic physics, numerical methods

6

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

0. 51	echic competencies acquired
Specific competences	 Using in-depth knowledge of physics, mathematics, and programming in various multi- and inter-disciplinary fields. Applying atomic physics to understand of complex scientific phenomena. Making effective use of in-depth knowledge of physics, mathematics in solving real problems in atomic physics Using advanced information technology and electronic communication in order to analyse, model, simulate, and aggregate data from various branches of physics or other related fields. Solving advanced problems of atomic physics by means of field-related mathematical and computer instruments (analytical, numerical, or statistical tools). Communicating complex scientific ideas, experiments or outcomes of a scientific project.
compete	 Accomplishment of professional tasks in an effective and responsible manner, in compliance with the field-specific legislation and code of ethics. Implementation of effective interdisciplinary teamwork methods at various hierarchical levels. Effective use of information sources, as well as communication and professional-assisted training resources in both mother tongue and English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	The students should acquire basic knowledge about numerical methods used in atomic physics.
7.2 Specific objective of the discipline	 The students should become familiar with the approximation methods used in atomic physics and other fields, such as the variational method, the stationary and time dependent perturbational methods. The students should form their skills for programming the applications of these methods. They should be able to solve problems and perform numerical calculations by computer individually

8.1 Course	Teaching methods	Remarks
Introduction. Approximation methods in atomic physics.	Explication,	
The calculation of 2-electron matrix elements	problematization,	
Multielectron atoms. Independent electron appoximation. The coupling of angular momenta	multimedia projection, computer exemplification.	
Electrostatic corrections to the Hartree-Fock method. The dependence of the energy on the total spin and on the total angular momentum.		
Beyond the independent electron approximation. The configuration interaction method		
Time dependent perturbation theory. Transition probabilities.		
Atomic collisions. Cross sections. The perturbational		
treatment of one-electron transitions		
The treatment of the two-electron transitions.		

Transitions induced by the electromagnetic field		
Optical transitions. The dipole approximation.		
Numerical solution of the one dimensional Schrodinger		
equation. Continuum states		
Numerical solution of the one dimensional		
Schrodinger equation. Bound states		
Direct numerical colution of the time independent		
Direct numerical solution of the time-independent		
Schrödinger equation in 3 dimensions		
Direct numerical solution of the time dependent		
Schrödinger equation in 3 dimensions		
Bibliography		
1. Bransden and Joachain, The physics of atoms and mo	ecules Editura Tehnică I	Rucuresti 1998
 L. Nagy, Numerikus es kozelito modszerek az atomfizi 		•
physics), Scientia Cluj, 2002		
3. L. Nagy, Two-electron processes in fast collisions wi	th charged particles, Nuc	cl. Instr. Meth. B, 124 (1997),
 271-280. L. Nagy, Multi-electron processes in atomic collisions 	- Theory Nucl Instr Met	th R151 (1000) 22-120
 L. Nagy, Multi-electron processes in atomic collisions L. Ixaru, Metode numerice pentru ecuatii diferentiale 	•	
6. T. Beu, Calcul numeric in C, Ed. Albastra, Cluj, 2000		.,,
7. Haken and Wolf, The physics of atoms and quanta, Sp	ringer Verlag, 1994	
1. The numerical calculation of a one-electron		
Hamiltonian matrix element.		
2. The numerical calculation of a two-electron		
Hamiltonian matrix element		
3. Application of the Hartree-Fock method		
In the second part: each student receives an individual problem to solve. He/she studies the theoretical		
background, peforms the analytical calculations, writes the		
computer code for the numerical part and elaborates a		
report on the problem. The presentation should follow the		
structure of a scientific paper.		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

•

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowlidge, understanding and capacity of application of numerical methods in atomic physics	Oral exam	50
10.5 Seminar/lab activities	Individual work	Written report	50
10.6 Minimum performanc	e standards		1
55%			

Date	Signature of course coordinator	Signature of seminar coordinator
26.09.2017		
Date of approval	Signature of	f the head of department