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Abstract
Cross sections for the ionization–excitation of helium by fast charged-particle
impact are calculated using the impact-parameter method and second-order
perturbation theory. The inclusion of the two-step 1 mechanism in the
calculations considerably improves our previous results. The dependence of
the cross sections on the sign of the projectile charge is also investigated.

Experimental data for the ionization–excitation of helium by fast charged-particle impact [1]
show that, similarly to double ionization, cross sections for electrons are almost a factor-
of-two larger than for the same velocity protons over a wide velocity range (above 5 au).
This interesting behaviour has not yet been reproduced theoretically. Most of the theoretical
investigations of this transition are only performed for electron projectiles [2–8] and our
previous calculations [9,10] lead to a much smaller difference in the cross sections for positively
and negatively charged projectiles.

In our previous work [10] we performed a second-order calculation in terms of the
projectile–electron interaction. Electron correlation has been taken into account in the initial
state by the use of CI wavefunctions, but has been neglected in the final state. In this
approximation we have obtained, for the ratio between cross sections for electrons and protons,
the value of 1.1 at 5 au velocity, instead of the experimental ratio of 1.6.

Now we include in our calculations the two-step 1 (TS1) mechanism. In this process the
electron ejected directly by the projectile interacts with the other electron, causing its transition.
In this way electron correlation in the final state is taken into account perturbationally. This
mechanism is necessary for the correct description of the two-electron transition, because
electron correlation is not included in the wavefunction for the final state. We study the
importance of the TS1 mechanism in the calculation of the ionization–excitation cross sections,
and compare the obtained cross sections for positive and negative projectiles (protons and
antiprotons) at different impact energies.

Our theoretical model has been described in detail previously [11, 12]. We apply in the
calculation the impact parameter method, the projectile moving on a classical straight-line
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trajectory. The differential cross section for a given energy εc and angle � of the ejected
electron can be obtained by an integral of the transition probability over the impact parameter

σ(εc, �) =
∫

d2B |a(B)|2, (1)

while the total cross section is obtained by integration over all energies and angles:

σ =
∫

d�

∫
dεc σ (εc, �). (2)

The transition amplitude a(B) can be written as a sum of the amplitudes characteristic for
each mechanism. In terms of the many-body perturbation theory through second order these
mechanisms are the two-step 2 (TS2—second-order in projectile–electron interaction), shake,
ground-state correlation and TS1 (final-state correlation) [11, 13]. As shown below, we take
into account ground-state correlation by the use of the correlated wavefunction in the initial
state, and in this way it is included to all orders in the generalized shake amplitude a

(1)

shake. In
this model the amplitude reduces to three terms:

a = a
(1)

shake + a
(1)
TS1 + a(2). (3)

The shake amplitude expresses the first Born approximation. However, this is not the
classical one based on single-configuration wavefunctions and change in the screening after
the removal of one electron. a

(1)

shake is a generalized shake amplitude, which may also account
for electron correlation in the initial and final states, if these are described by correlated
wavefunctions

a
(1)

shake = −i
∫ +∞

−∞
dt exp(i(Ef − Ei)t)〈f |[V1(t) + V2(t)]|i〉. (4)

Here Ei and Ef stand for the energies of the initial and final states i and f respectively, while
V1(t) and V2(t) are the two projectile–electron interaction potentials.

In the present calculations we use correlated CI wavefunctions for the ground state of
helium taken from the literature [14]:

|i〉 =
∑

l

cl|il1〉|il2〉, (5)

but the final state is described by uncorrelated, properly symmetrized wavefunctions:

|f 〉 = 1√
2
(|f ′

c(1)〉|f ′
e(2)〉 + |f ′

e(1)〉|f ′
c(2)〉). (6)

f ′
e stands for the excited state of the He+ ion, while f ′

c is the wavefunction of the ejected
electron, calculated numerically in the screened potential of the residual ion. Because f ′

e is
a 2p orbital, the final state is practically orthogonal to the initial state. To be rigorous, we
should mention that the initial state also contains npn′p configurations, and this orthogonality
is not exact. However, the 〈i|f 〉 overlap integral for the mean value of the energy of the ejected
electron is less than 10−2, and no further orthogonalization is necessary. Through this choice of
the wavefunctions a

(1)

shake includes the classical shake mechanism and ground-state correlation,
but does not include final-state correlation.

Introducing the expressions above for the initial and final states into the formula (4) of the
amplitude we get
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a
(1)

shake = −i
1√
2

∑
l

cl

[
〈f ′

e(2)|il2〉
∫ +∞

−∞
dt exp(i(Ef − Ei)t)〈f ′

c(1)|V1(t)|il1〉

+〈f ′
e(1)|il1〉

∫ +∞

−∞
dt exp(i(Ef − Ei)t)〈f ′

c(2)|V2(t)|il2〉

+〈f ′
c(2)|il2〉

∫ +∞

−∞
dt exp(i(Ef − Ei)t)〈f ′

e(1)|V1(t)|il1〉

+〈f ′
c(1)|il1〉

∫ +∞

−∞
dt exp(i(Ef − Ei)t)〈f ′

e(2)|V2(t)|il2〉
]
. (7)

Thus, ground-state correlation and classical shake mechanisms are included in the amplitude
above to all orders.

The final-state correlation of the two electrons is included in the a
(1)
TS1 amplitude

perturbationally. Within second-order many-body perturbation theory the TS1 mechanism
means that the V1(t

′) + V2(t
′) projectile–electron interaction takes the two-electron system to

an intermediate state k (with energy Ek), then the v electron–electron interaction leads to the
final state. Thus, the TS1 amplitude will read [11]

aTS1 = −
∑

k

∫ +∞

−∞
dt ′

∫ +∞

t ′
dt exp(i(Ef − Ek)t)〈f |v|k〉〈k|V1(t

′)

+V2(t
′)|i〉 exp(i(Ek − Ei)t

′). (8)

In order to obtain a convergent integral over t we introduce in the exponent a dumping factor
+iη, and after performing the integration we make η → 0

aTS1 = −i
∑

k

∫ +∞

−∞
dt ′ 〈f |v|k〉 1

Ef − Ek + i0
exp(i(Ef − Ei)t

′)〈k|V1(t
′) + V2(t

′)|i〉. (9)

Furthermore, we perform the following approximations. For the calculation of this
amplitude we consider only the basic i1

1 i
1
2 ≡ 1s2 configuration for the ground state, and

also the intermediate state is written as k1k2. In these conditions the matrix elements of the
projectile–electron interaction become

〈k1k2|V1(t
′)|i1

1 i
1
2〉 = 〈k2|i1

2〉〈k1|V1(t
′)|i1

1〉 (10)

〈k1k2|V2(t
′)|i1

1 i
1
2〉 = 〈k1|i1

1〉〈k2|V2(t
′)|i1

2〉. (11)

i1
1 and k1 such as i1

2 and k2 are not strictly orthogonal, because they are calculated in different
potentials (the screening is modified during the collision). However, with good approximation

〈k2|i1
2〉 ≈ 〈k2|i ′2〉 = δk2i

′
2

(12)

〈k1|i1
1〉 ≈ 〈k1|i ′1〉 = δk1i

′
1
, (13)

where the primed wavefunctions are calculated with the modified screening. The 〈i ′2|i1
2〉 overlap

is 0.98, so the change in the screening does not have too much effect on the ground-state
wavefunction. Beside i ′2 ≡ 1s, the largest overlap with the i1

2 orbital has k2 = 2s, where
〈2s|i1

2〉 = 0.15, other overlap integrals being less than 0.05. In our calculation we neglect
the terms containing these small overlap integrals (which squared are less than 0.03), and
approximate the 〈i ′2|i1

2〉 integral by 1. In these conditions, from the sum over all possible k1k2

intermediate states, that over k2 in the case of the V1(t
′) interaction, and that over k1 for V2(t

′)
collapse. The energies of the intermediate states will be Ek = εk1 + ε′

i2
or Ek = εk2 + ε′

i1
,

respectively, where ε′
i1

and ε′
i2

stand for the energy of one electron in the 1s state if the other
electron has already suffered a transition.
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The TS1 amplitude will read

aTS1 = −i
∑
k1

∫ +∞

−∞
dt ′

1

Ef − εk1 − ε′
i2

+ i0
exp(i(Ef − Ei)t

′)〈f |v|k1i
′
2〉〈k1|V1(t

′)|i1
1〉

−i
∑
k2

∫ +∞

−∞
dt ′

1

Ef − εk2 − ε′
i1

+ i0
exp(i(Ef − Ei)t

′)〈f |v|k2i
′
1〉〈k2|V2(t

′)|i1
2〉.

(14)

f is the same symmetrized wavefunction of the excited and continuum electron as in (6).
Because of the complex denominator the aTS1 amplitude has real and imaginary parts for each
parity of the initial and final states. Taking into account that the ‘sum over k1 or k2 intermediate
states’ is a sum over the bound states and an integral over the continuum states, the real and
imaginary parts can be separated as follows:

aTS1 = −iP
∑
k1

∫
dk1

1

Ef − εk1 − ε′
i2

〈f |v|k1i
′
2〉

∫ +∞

−∞
dt ′ exp(i(Ef − Ei)t

′)〈k1|V1(t
′)|i1

1〉

−iP
∑
k2

∫
dk2

1

Ef − εk2 − ε′
i1

〈f |v|k2i
′
1〉
∫ +∞

−∞
dt ′ exp(i(Ef − Ei)t

′)〈k2|V2(t
′)|i1

2〉

+π

∫
kc

1 dk̂1 〈f |v|kc
1i

′
2〉

∫ +∞

−∞
dt ′ exp(i(Ef − Ei)t

′)〈kc
1|V1(t

′)|i1
1〉

+π

∫
kc

2 dk̂2 〈f |v|kc
2i

′
1〉

∫ +∞

−∞
dt ′ exp(i(Ef − Ei)t

′)〈kc
2|V2(t

′)|i1
2〉. (15)

The first two terms, where we have a principal-value integral over the momenta of the
continuum intermediate states and a sum over the discrete intermediate states, are the off-
shell part of the amplitude, energy is not conserved for these states. The last two terms are
the energy-conserving or on-shell part, where εkc

1
= Ef − ε′

i2
and εkc

2
= Ef − ε′

i1
. In the

calculations we have neglected the bound intermediate states, and have performed only the
integral over the continuum, k1 or k2 states, respectively. This approximation is justified
because the 1/(Ef − εk1 − ε′

i2
) fraction has important values only around εk1 ≈ Ef − ε′

i2
,

and this value lies in the continuum, at least 1.5 Hartrees above threshold. In other words, the
�E = Ef − εk1 − ε′

i2
deviation from the conservation of the energy in the intermediate state

cannot be too large.
As for the second-order amplitude (describing the TS2 mechanism), it is obtained by a

double integral over time and a sum over the intermediate states |k〉 with energies Ek , the
infinite number of eigenstates of the two-electron unperturbed Hamiltonian

a(2) = −
∑

k

∫ +∞

−∞
dt exp(i(Ef − Ek)t)〈f |V1(t)|k〉

∫ t

−∞
dt ′ exp(i(Ek − Ei)t

′)〈k|V2(t
′)|i〉

−
∑

k

∫ +∞

−∞
dt exp(i(Ef − Ek)t)〈f |V2(t)|k〉

∫ t

−∞
dt ′ exp(i(Ek − Ei)t

′)〈k|V1(t
′)|i〉.

(16)

In the present calculations we made the same approximations in the calculation of this
amplitude as in our previous paper [10]. Only the intermediate states which are reachable from
the initial or the final states by a single-electron transition are kept. In these conditions the
second-order amplitude becomes
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a(2) = − 1√
2
〈f ′

e(2)|fe(2)〉〈i ′1|i1
1〉

∫ +∞

−∞
dt exp(i(Ef − Eie)t)〈f ′

c(1)|V1(t)|i ′1〉

×
∫ t

−∞
dt ′ exp(i(Eie − Ei)t

′)〈fe(2)|V2(t
′)|i1

2〉

− 1√
2
〈f ′

c(2)|fc(2)〉〈i ′1|i1
1〉

∫ +∞

−∞
dt exp(i(Ef − Eic)t)〈f ′

e(1)|V1(t)|i ′1〉

×
∫ t

−∞
dt ′ exp(i(Eic − Ei)t

′)〈fc(2)|V2(t
′)|i1

2〉

− 1√
2
〈f ′

e(1)|fe(1)〉〈i ′2|i1
2〉

∫ +∞

−∞
dt exp(i(Ef − Eie)t)〈f ′

c(2)|V2(t)|i ′2〉

×
∫ t

−∞
dt ′ exp(i(Eie − Ei)t

′)〈fe(1)|V1(t
′)|i1

1〉

− 1√
2
〈f ′

c(1)|fc(1)〉〈i ′2|i1
2〉

∫ +∞

−∞
dt exp(i(Ef − Eic)t)〈f ′

e(2)|V2(t)|i ′2〉

×
∫ t

−∞
dt ′ exp(i(Eic − Ei)t

′)〈fc(1)|V1(t
′)|i1

1〉. (17)

Here Eie stands for the energy of the intermediate state when one electron is in the |i ′1〉
(unscreened) initial state and the other one in the |fe(2)〉 excited state, while Eic represents
the energy of the intermediate state described by the |i ′1〉|fc(2)〉 configuration.

We use the model above to perform calculations for the ionization–excitation of helium to
the 2p, 3p and 4p states by fast proton and antiproton impact. There are no experimental data
for antiprotons, but our result for velocities above 5 au can be compared to the data obtained
with the same velocity electrons.

Figure 1 represents our calculated cross sections for the production of the 2p states of
the He+ ion by proton and antiproton impact obtained with the present model along with the
previous results without the TS1 mechanism [10] and the experimental data [1]. In spite of the
fact that the agreement with the experimental data is not perfect, results are much improved
by the inclusion of the TS1 mechanism in the calculations. The results for negative projectiles
at 5 au velocity have been doubled, but this value is still below the experimental cross sections
for electrons by 50%. The ratio between cross sections for negative and positive projectiles at
the same velocity has increased from 1.1 to 1.25, which is still far from the experimental ratio
of 1.6.

The experimental data of Bailey et al [1] are normalized to the absolute measurements
of Forand et al [15]. As pointed out by Dogan et al [16], although the different absolute
measurements lie within their combined errors, there are concerns about the absolute values
of the ionization–excitation cross sections derived from undispersed VUV radiation. This
possible uncertainty in the experimental data suggests that comparing the ratio of the cross
sections obtained with negative and positive projectiles to the experiments would be a more
reliable test of the theory than the comparison of absolute values. Furthermore, experiments
determine an emission cross section, which includes cascade contributions, while theory
determines a He+(2p) excitation cross section. This suggests that theoretical result should
be lower than the experimental data.

It is interesting to remark that the existing theoretical cross sections for electron projectiles
do not agree with each other [2–5]. In figure 2 we have plotted the results of our calculations
along these theoretical data for electron impact ionization–excitation, in spite of the fact that
our model is valid mainly for impact with heavy particles, and direct comparison has sense
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Figure 1. Calculated cross sections for the ionization–excitation of helium to the 2p state by proton
and antiproton impact as a function of the projectile velocity along with the experimental data of
Bailey et al [1]. The present calculations include the TS1 mechanism, while the previous ones
account only for shake and TS2.
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Figure 2. Calculated cross sections for the ionization–excitation of helium to the 2p state by proton
and antiproton impact as a function of the projectile velocity along with the experimental data of
Bailey et al [1] and theoretical results for equi-velocity electron impact [2–5].
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Figure 3. Contributions of different mechanisms to the cross section of the ionization–excitation
of helium to the 2p state as a function of the projectile velocity.

only for velocities above 5 au. These theoretical total cross sections for electron impact are
all first-order calculations, with a more or less sophisticated description of the initial state and
of the ejected electron–residual ion interaction. We have to point out the comments of Dogan
et al [16] on these results. In the calculations the correct description of both the initial and
final states is essential. Raeker et al [4] use the R-matrix (close-coupling) expansion for the
ejected-electron–residual-ion system. Including more states in the close-coupling expansion
reduces the the cross section, leading to worse agreement with the experiment. This is the
reason why Kuplyauskene and Maknitskas [3], omitting channel coupling completely, obtain
cross sections in good agreement with the experimental data.

Since the publication of these first Born results, some authors have performed calculations
also in second order [5–8], obtaining much better agreement with experiment. However, these
results are for triple-differential cross sections, only for some certain energies and angles, and
are not directly comparable with our total cross sections.

Returning to the discussion for figure 2, the comparison between our and other theoretical
cross sections can only be made with some care. We are comparing our second-order results
for proton and antiproton impact with first-order results for electron impact.

The relative importance of different mechanisms in the ionization–excitation as a function
of the projectile velocity is shown in figure 3. The first-order contribution becomes larger
than the second-order one above 5 au velocity. Below this velocity the second-order (TS2)
mechanism is dominant. TS1 is very important in the first-order amplitude. Its contribution is
by an order of magnitude larger than the shake contribution at all velocities.

Cross sections for the ionization–excitation to the 3p state are represented in figure 4.
Here the agreement for negative projectiles with the experimental data and the calculations of
Raeker et al [4] at sufficiently high velocities is very good, but the ratio between cross sections
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Figure 4. Same as figure 2, but for the 3p state.
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Figure 5. Same as figure 2, but for the 4p state.

for antiprotons and protons is too small compared to the experimental ratio. The situation
seems to be similar for the ionization–excitation to the 4p state (figure 5), but in this case the
experimental data are much more spread, and no certain conclusion can be formulated.
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In conclusion, including the TS1 mechanism in the description of the ionization–excitation
process, our previous results [10] are much improved. However, no perfect agreement with
experiment is achieved. Possibly, the perturbational description of the final-state correlation
is not accurate enough if the ejected electron is very slow. Finally, we should emphasize that
our theoretical calculation is the only one for ionization–excitation studying the dependence
of the cross section on the sign of the projectile charge.
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