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Abstract

Ionization cross sections for positron collisions with hydrogen molecules have been calculated using a two-center m
representation. The results are compared with our previous work which used sphericaly averaged H2 wavefunctions as well a
with existing experimental results. The use of a two-centre wave function for the molecular target, either of the Heitler–
type or a Gaussian representation, produces results which lie between the two most recent sets of experimental da
that our CPE4 model produces results in better agreement with experiment over the whole energy range than our CP
 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Positron impact ionization of molecules has received significant attention recently. On the experimen
most of the work has been carried out for the ionization of molecular hydrogen. These experiments p
integrated [1–4] and triple differential cross sections [5]. Other experiments have measured the ionization o2 [6],
N2 [7], CO [8], CO2 [8,9] and even organic molecules [10].

So far, theoretical studies of this process have been limited to molecular hydrogen, where distorte
calculations produced integrated [11,12] and triple differential cross sections [13]. The paper by Chen et
studied the ionization problem using two-center wavefunctions for the electrons, where the calculation w
first for a fixed molecular orientation and then averaged over nuclear orientations. The paper by Camp
al. [11] uses a one-center formalism with the hydrogen molecular orbitals spherically averaged before the io
calculations.
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This Letter has two goals. First, we want to assess the accuracy of our previous spherically averaging m
performing the same calculation in a two-center approximation. Secondly, we want to explore the use of a G
representation for the molecular target, which can be readily used for other, more complex targets. We sha
results in both the CPE and CPE4 approximations, two ionization models which were shown to produce
theoretical cross sections for positron impact ionization of noble gases and hydrogen [14]. Model CPE4
is considered to be superior to CPE, assumes that the ejected electron feels the effect of both the faster
positron and the residual molecular ion.

2. Theory

Starting from the expression for the ionization amplitude given in [12], the triple differential cross secti
the ionization of the hydrogen molecule by positron impact can be shown to be

(1)
d3σ

dk̂fdk̂edEe
= 2

(2π)4

Ei
|f |2,

whereEi is the energy of the projectile,Ee the energy of the ejected electron, whilek̂e andk̂f stand for the direction
of the momenta of the ejected electron and scattered positron, respectively. The amplitude can be written

(2)f = 〈
φf (r1)φe(r2)φH+

2
(r3)

∣∣V (r12)
∣∣φi(r1)ΨH2(r2, r3)

〉
,

where φi and φf stand for the wavefunction of the incident and scattered positron, respectively,φe is the
wavefunction of the ejected electron, whileΨH2 describes the initial state of the target andφH+

2
the residual ion. In

order for (1) to be valid, the ejected electron wave function must be orthogonalized to the target wave func
H2 as detailed below. In the above amplituder1 is the position vector of the positron, whiler2 andr3 stand for the
position vectors of the active and the passive electron, respecively. The fact that each of the electrons can
is reflected in the factor 2 in the expression of the cross section (1).

We have used two different wavefunctions to describe the ground state of the hydrogen molecule. Fir
have adopted the Heitler–London type wavefunction of Wang [15]. It has the form

(3)ΨH2(r2, r3)=NH2

[
φ(ra2)φ(rb3)+ φ(rb2)φ(ra3)

]
,

whereφ(r) is the hydrogenlike 1s wavefunction (with the effective charge 1.166), whilerai andrbi denote the
distances between nucleusa or b and theith electron with position vectorri (i = 2,3) relative to the centre of th
molecule. These can be expressed as

(4)rt i = ri ∓ R0

2
R0 being the internuclear separation. Heret denotes the two atomsa andb with corresponding signs ‘−’ and ‘+’,
respectively. In this case the orthogonalization condition imposed is that

(5)
〈
φe(r3)

∣∣φ(rt3)〉 = 0

where as abovet denotes the atomsa and b. Note that it is sufficient to impose this condition on one of
wavefunctionsφ and the other will be automatically orthogonal as well. Since the speed of the ejected elec
generally much faster than the nuclear motion, in the final state of the residual ion the internuclear separa
the orientation of the molecular axis are taken as the same as in the initial state (Born–Oppenheimer sepa
that we can describe the residual ion by a linear combination of atomic orbitals

(6)φH+
2
(r3)=NH+

2

[
φ(ra3)+ φ(rb3)

]
φ(r) being the same atomic orbitals as for the initial state of H2.
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Using expressions (3) and (6) for the molecular wave functions, the scattering amplitude can be written

f =NH+
2
NH2

{〈
φf (r1)φe(r2)

∣∣V (r12)
∣∣φi(r1)φ(ra2)

〉[〈
φ(ra3)

∣∣φ(rb3)
〉 + 〈

φ(rb3)
∣∣φ(rb3)

〉]
+ 〈
φf (r1)φe(r2)

∣∣V (r12)
∣∣φi(r1)φ(rb2)

〉[〈
φ(ra3)

∣∣φ(ra3)
〉 + 〈

φ(rb3)
∣∣φ(ra3)

〉]}
(7)=NH+

2
NH2(1+ S)

〈
φf (r1)φe(r2)

∣∣V (r12)
∣∣φi(r1)

[
φ(ra2)+ φ(rb2)

]〉
,

whereS = 〈φ(ra3)|φ(rb3)〉 is the overlap integral between the two atomic orbitals centered on different n
Taking into account thatNH+

2
= 1/

√
2(1+ S) and introducing the notation

(8)φg(r2)=Ng
[
φ(ra2)+ φ(rb2)

]
,

whereNg =NH2/(2NH+
2
), the amplitude can be written simply as

(9)f = 〈
φf (r1)φe(r2)

∣∣V (r12)
∣∣φi(r1)φg(r2)

〉
.

Alternatively, we have used Gaussian wavefunctions for the description of the ground state of the molec
a basis set of 3 or 6 basis functions. In this case, because the wavefunction for H2 is a product of two molecula
orbitals of the form given in (8), integration over the coordinatesr3 can be carried out leading directly to th
expression (9) for the amplitude. Here the orthogonalization condition is〈φe(r3)|φ(ra3)+φ(rb3)〉 = 0 which only
affects the ejected partial waves of even parity. The hydrogen 1s orbitals have been constructed as contraction
1s Gaussian type functions (CGF) [16]

(10)φCGF
1s =

L∑
p=1

dpφ
GF
p (αp, r),

whereL is the length of the contraction anddp a contraction coefficient. The Gaussian primitives have the ge
form

(11)φGF
p (αp, r)=

(
2αpγ 2/π

)3/4
e−αpγ 2r2

,

γ being a scaling factor used to scale all the exponents in the related Gaussians.
A standard value of 1.24 is normally used forγ in ab initio calculations for polyatomic molecules [17]. Howev

for the hydrogen molecule in its ground state an optimum scale factor of 1.19 has been obtained [18]
calculations we have used two different basis sets, namely STO-3G and STO-6G [19].

In both cases, as in a previous paper [20], we expand the wavefunction of the active electron into a L
series

(12)φ(ra2)+ φ(rb2)=
∑
lb

clb(r2,R0)Plb (cosω2),

whereω2 stands for the angle betweenr2 andR0. The expansion coefficients can be expressed with the follow
integral

(13)clb(r2,R0)= 2lb + 1

2

+1∫
−1

dxPlb(x)

[
φ
(√

r2
2 +R2

0/4− r2R0x
)

+ φ
(√

r2
2 +R2

0/4+ r2R0x
)]
.

In order to separate the angular dependences on the position of the electron and the orientation of the m
axis, the Legendre polynomial is expanded in terms of spherical harmonics

(14)Plb(cosω1)= 4π

2lb + 1

∑
mb

Y ∗
lbmb

(R̂0)Ylbmb(r̂2).
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Using the above, we have expressed the two-centre wavefunction as a sum of products of a one-centre
wavefunction characterized by angular momentumlb

(15)φlbmb (r2)= 4πNg
2lb + 1

clb(r2,R0)Ylbmb(r̂2),

and a spherical harmonic expressing the dependence on the orientation of the molecular axisY ∗
lbmb

(R̂0).
Using the above expansion, the amplitude can be written as

(16)f =
∑
lb,mb

〈
φf (r1)φe(r2)

∣∣V (r12)
∣∣φi(r1)φlbmb (r2)

〉
Ylbmb (R̂0).

The cross section (1) calculated with this amplitude will depend on the orientation of the molecular axisR̂0. In the
usual experimental setup this dependence cannot be detected. In order to compare the theoretical resul
experiments, we average the cross section over all the possible anglesR̂0, similar to Chen et al. [12]. Taking int
account the orthogonality properties of the spherical harmonics, the averaged differential cross section be

(17)
d3σAV

dk̂f dk̂edEe
= 2

(2π)4

4πEi

∑
lb,mb

∣∣〈φf (r1)φe(r2)
∣∣V (r12)

∣∣φi(r1)φlbmb (r2)
〉∣∣2.

Further, in the calculation of the total cross section, one must average over the angles of the outgoing
and positron as well as the energy of the electron as described in [21] for the atomic case. In the expanslb
for homopolar molecules only the terms with evenlb are nonzero. In our present calculations we have taken
acount only the terms withlb = 0 and 2. The terms withlb > 2 contribute less then 0.5%, to the total cross sect
and have been neglected.

3. Results and discussion

In Figs. 1 and 2 we present the integrated ionization cross sections corresponding to the models CPE a
respectively. In each figure we show three theoretical curves which converge at high impact energies, b
greater differences in the region of the maximum cross section. In both figures the top curve correspond
one-center calculation [11] using the spherically averaged target representation of Wang [15], the lowe
corresponds to the two-center calculation with Wang’s target representation and the middle curve corres
the two-center calculation with a 6-term gaussian representation of H2.

Figs. 1 and 2 also include the experimental results. The results of Chen et al. [12] using a two
approximation and Wang’s target representation lie consistently below our results and are not shown. The io
model employed by Chen et al. was a “truncated” CPE, in which the scattered positron is always faster
ejected electron and this might explain the difference from our middle curve in Fig. 1.

The various experiments seem to disagree significantly in the region of the maximum of the cross sectio
all used coincidence techniques combined with time-of-flight measurements to ensure that the direct io
data is not affected by the positronium formation. The data of Moxom et al. [3] were obtained by eliminat
background caused by random extraction of ions in the original work of Knudsen et al. [2]. The data of Ja
et al. [4] lie considerably below the other experimental results and our theoretical calculations.

Our Figs. 1 and 2 shows that the one-center calculations using the spherically averaged target repre
produce data in best agreement with Moxom et al. [3]. However, compared with our two-center calculation
results are higher in the region of the maximum by 13% for CPE and 16% for CPE4. Our current two-cent
and that of Chen et al. [12] produce data which lay between the most recent experimental sets of results [

Finally, changing the molecular representation from Wang’s model to a gaussian set does not sign
change the ionization cross sections. We have also investigated the effect of increasing the gaussian s
6-terms set produced almost the same results as the 3-terms set.
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short-dash
Fig. 1. CPE model results: solid curve, two-centre Gaussian wave functions; long-dash curve, two-centre Wang wave functions;
curve, spherically-averaged Wang wave functions. Experimental results:• [3], ◦ [2], ∗ [4].

Fig. 2. CPE4 results. The legend is the same as for Fig. 1.
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4. Conclusions

Our calculations show that the results at higher energies are not particularly sensitive to the wave functio
The CPE4 results seem to be in better agreement at these energies. However, in the region of the maximu
of spherically averaged molecular orbitals in the one-center ionization model produces significantly highe
for the integrated cross sections. Both two-center models produce data which lie between the two most re
of measurements.

We also find that the use of Gaussian representations of molecular orbitals produces ionization cross
very similar to those obtained with the Heitler–London model for H2 obtained by Wang [15]. The use of Gauss
molecular representations has the advantage of providing a relatively simple approach to the ionization
complex molecules, a task that we intend to undertake in the near future.
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