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Introduction 
 
In the theoretical study of two-electron transitions helium is the most 
investigated atom, because no other electrons are involved in the 
process. Various groups have studied two-electron transitions in the 
past several years theoretically and experimentally. 
 The experimental study of Andersen et al and of Hvelplund et 
al [1-3] on the double ionization of helium has shown unambiguously 
the dependence of the cross sections on the sign of the projectile 
charge. For the double ionization of helium they have obtained, that 
the cross sections for antiprotons are up to a factor of two higher 
than for the equivelocity protons over a wide velocity range. A similar 
dependence has been reported by Bailey et al [4] for the ionization-
excitation. 
 The situation is not so clear for the double excitation of helium. 
The doubly excited states of the helium atom are not stationary 
discrete states; they are all autoionizing states, their energy lying 
above the single-ionization limit. In these conditions, information 
about the population of the doubly excited states can be obtained by 
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Abstract. Double excitation cross sections of the helium to the 
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compared with other theoretical calculations. 
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the analysis of the energy spectra of the ejected electron, the 
different autoionizing states appearing as resonances. The 
theoretical interpretation of these experimental spectra is difficult, 
because of the interference of the direct and resonant ionization 
processes and the three-body Coulomb interaction in the final state 
between the scattered projectile, ejected electron and residual ion. 

There have been published some experimental [5,6] and 
theoretical [7-9] studies on the double excitation process. The 
different calculations of the double excitation cross sections of the 
helium atom usually do not agree with each other. 

The complete theoretical description of the resonant ionization 
processes at intermediate projectile energies (100 keV/u) performed 
by Godunov et al [10] made it possible for Moretto-Capelle et al [11] 
to extract double excitation cross sections from their experimental 
spectra of the ejected electron, obtained with a high resolution 
spectrometer. These cross sections not only complete the 
experimental data of Giese et al [6] to lower energies, but are also 
stated to be exact. 

Our previous study on the double excitation of the helium [7] 
has produced cross sections in very good agreement with these 
latest experimental data. The considered transitions have been to the 
(2s2p)1P, (2p2p)1D and (2s2s)1S states. 

In the present paper we complete our previous work [7], by 
calculating the cross sections for the double excitation of helium to 
the (2p2p)1S state. Beside the proton projectiles we have also 
performed calculations for antiprotons and we analyze the 
dependence of the cross section on the sign of the projectile charge. 
We have considered a wide range of the impact energy (from 100 
keV  to 10 MeV) in order to discuss the importance of different 
mechanisms as a function of energy. Our results are compared with 
other theoretical cross sections. There are no experimental data for 
this state. 
 
 Theory 
 

The theoretical method applied for the present calculation has 
been discussed in detail in the previous papers of one of the authors 
[13,14]. This is the impact-parameter (semiclassical) method, 
applying second-order perturbation approximation. 
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 For the calculation of the double-excitation cross section of the 
helium by proton and antiproton impact we treat the projectile as a 
classical particle which moves on a straight-line trajectory. The 
interaction of the projectile with the two electrons 

)()()( 21 tVtVtV +=                                               (1) 
is considered as a perturbation. The wave function of the two-
electron system is approximated as a product of one-electron wave 
functions. The unperturbed Hamiltonian of the two electrons is 
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Applying time-dependent perturbation theory, the first-order 
probability amplitude for the transition of the electrons can be written 
as 
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Here 〉i|  and 〉f|  are the initial and final two-electron states, 
respectively, iE  and fE  the energies of these states, while 

)(1 tV and )(2 tV  stand for the two time-dependent projectile-electron 
interactions. The second-order amplitude is obtained to be:  
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For the description of the initial and final states we have used 
configuration-interaction (CI) wave-functions, which are written as a 
sum of products of one-electron orbitals: 
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Introducing the initial- and final-state CI wave-functions in the first-
order amplitude (3), one obtains a sum of products of overlap 
integrals and one-electron transition amplitudes: 
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In our second order term the transition is caused by two 
consecutive projectile-electron interactions. We keep track of the 
time ordering: the energy transfer to the individual electron depends 
on the order of the interactions. In order to calculate the second-
order amplitude, from the infinite number of intermediate states we 
keep only the most important ones. These are assumed to be those 
reachable from the initial and the final state by a single-electron 
transition. Simplified, in the considered intermediate states one of the 
electrons is in its initial state and the other one have reached the final 
state. In this approximation one obtains for the second order 
amplitude:  
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Here 12lkE  stands for the energy of the intermediate state when one 
electron is in the 〉li 1'|  state and the other one in 〉kf 2| , while 21ljE  
represents the energy of the intermediate state described by the 

〉〉 lk if 21 '||  configuration. 
For the description of the bound state of helium we have used 

the CI wave-functions of Nesbet and Watson [14]. The wave-
functions for the excited (2p2p)1S state have been generated by us. 
We have used a variational method to obtain the coefficients for each 
configuration, namely 2s2, 2p2, 2s3s and 2p3p. All these 
configurations have been taken into account in the first-order 
amplitude. The second-order amplitude has been calculated by using 
only the basic 1s2 configuration for initial state and 2s2s, 2p2p 
configurations for the final state. 
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 For this given state, the first-order amplitude is purely 
imaginary. The second-order amplitude, because of the time-ordering 
term, is complex. Interference occurs between first-order and 
second-order amplitudes, so we obtain different cross sections for 
positively and negatively charged projectiles. 
 The cross section can be calculated by integrating the square 
of the amplitude over the impact parameters: 

bdaa 22)2()1( ||2∫ +=σ                                          (8) 
 

Results and discussion 
 

Our calculated cross sections for the double excitation of 
helium for proton and antiproton projectiles as a function of the 
impact energy are plotted in Figure 1. Our results are compared with 
the theoretical cross sections calculated by Fritsch and Lin [8] in a 
close-coupling approximation, and with those of Moribayashi et al [9], 
calculated both by a close-couplin method (CC) and by a second-
Born approximation. As Figure 1. shows, we have obtained higher 
cross sections for antiprotons than for protons in contradiction with 
the other theoretical predictions, but in accordance with the usual 
trend, proven experimentally, for most of the two-electron transitions 
in helium [1-4]. For example at 100 keV impact energy the cross 
section for antiproton projectile is more than 2.5 times higher than for 
the proton projectile. This large ratio, above 2 MeV projectile energy, 
tends to decrease. 

The second-order amplitude has a real, non-time-ordered part 
and an imaginary part due to the time ordering. The non time-ordered 
part corresponds to two independent one-electron transitions from 1s 
to 2p. The imaginary part gives with the first-order amplitude a large 
interference term in transition probability, proportional to Z3 (where Z 
is the charge of projectile), leading to a large difference in cross 
sections for protons and antiprotons. This difference decreases with 
the energy, because at high energies the second-order contribution 
becomes negligable, and so does the interference term.  

In Figure 2. we have plotted the first- and second-order 
contribution to the cross section for the excitation of the (2p2p)1S 
state as a function of the projectile energy. At lower energies, the 
second-order contribution is larger than the first-order contribution. At 
around 300 keV they become equal, and at higher energies the first-
order contribution dominates.  
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1. 
Figure. 1. Cross sections for the double excitation of helium to the (2p2p)1S state 
as a function of the projectile energy by proton and antiproton impact. 

 
Figure. 2. First-order and second-order contribution to the cross sections for the 
double excitation of the helium atom to the (2p2p)1S state as a function of the 
projectile energy. 
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Conclusions 
 

We have calculated with a well-tested method the cross 
sections for the double excitation of helium to the (2p2p)1S state by 
proton and antiproton impact. Electron correlation is taken into 
account by the use of CI wavefunctions in the initial an final states. 
We obtain higher cross sections for antiprotons than for protons, in 
contradiction with other theoretical results, but in accordance with the 
general trend observed for two-electron transitions. 
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