
Eur. Phys. J. D 27, 223–229 (2003)
DOI: 10.1140/epjd/e2003-00268-4 THE EUROPEAN

PHYSICAL JOURNAL D

Model analysis of the fragmentation of large H2O and NH3

clusters based on MD simulations

T.A. Beu1, C. Steinbach2, and U. Buck2,a
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Abstract. The fragmentation statistics of (H2O)n and (NH3)n clusters (n = 100–1000) is investigated by
MD simulations at different temperatures. The fragment size distributions are found to be well described
by power laws over a wide range of excitation energies. The maximum fragment size depends linearly on
the cluster size. A compact analytical model, implying the maximum fragment size and the power law
exponent, is shown to fairly fit the average fragment size profiles. Measurements are carried out for the
maximum fragment sizes after electron impact ionisation for water and ammonia clusters in the size range
of n = 50 to 2100. The measured linear dependence on cluster size is used to estimate the fragment size
distributions.

PACS. 36.40.-c Atomic and molecular clusters – 36.40.Qv Stability and fragmentation of clusters

1 Introduction

Fragmentation of particles is a widespread phenomenon,
which occurs in large molecules, atomic and molecular
clusters, as well as in nuclei after the interaction of the
particles with photons or other particles. This ubiqui-
tous behaviour has evoked the search for an universal
mechanism that governs all these processes. This is, how-
ever, a difficult task, since many of the available data
are incomplete and are therefore difficult to compare.
In addition, there are many theoretical approaches ac-
cessible which reach from pure statistical considerations
with and without thermodynamical constraints over per-
colation theory to Molecular Dynamics (MD) simulations
which take into account the realistic interaction forces and
contain all couplings. The success or failure of the differ-
ent theoretical descriptions depends largely on the type
of data sets. There are mainly three different fragmenta-
tion regimes. At low excitation energies mainly large and
small fragments result. This is the “evaporation” regime
where a small number of single particles evaporates and
the size dependence is exponential [1]. At high excita-
tion energies, the original particle falls completely into
small pieces and this is “the shattering” regime [2]. Some-
times, an intermediate case occurs where the distribu-
tion of fragments follows a power law. This latter case
can be nicely described by percolation theory, in which
the ansatz Pn(s) ∼ s−φG(s/n) is used for the formation
probability of a fragment of size s coming from a cluster
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of size n [1,3–5]. Edwards et al. [3] applied simulations
and exact enumeration to investigate this scaling law for
bond percolation clusters, while Debierre [4] deduced from
large-scale simulations the exact fragmentation exponent:
φ = 1.548. Campi et al. [1] reported fragment size distri-
butions that resulted from high energy nuclear collisions,
which are remarkably well reproduced by a percolation
model. Similar results have been obtained by analysing a
supercritical Lennard-Jones fluid [5]. The connection be-
tween the fragmentation behavior and phase transitions
have been recognized very early [6]. With the help of the
liquid drop model for nuclei Fisher calculated the appear-
ance of the droplets from the Gibbs free energy. Later on
fragmentation data based on Molecular Dynamics simula-
tions were fitted to these formulas for nuclear matter [7]
and atomic clusters [8]. They exhibit exactly the three
fragmentation regimes discussed earlier with the power-
law dependence included. The latter can be traced back
to the behavior of critical phenomena. Gross et al. [9] stud-
ied the influence of phase transitions on the fragmentation
in atomic clusters on a more general thermodynamical ba-
sis. Another attempt in this direction has been carried out
for the fragmentation data of H+

25, which are available on
an event-by-event basis [10,11]. A further possibility for
the interpretation of fragmentation data is the extreme
statistical limit, the maximal entropy limit. In this way
Levine and coworkers predicted the shattering of high ve-
locity impact of atomic clusters at hard surfaces [2] and
the fragmentation pattern of C60 and the ions after high
energy collisions and photoionisation [12]. The collision
dynamics and fragmentation of large water clusters have
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been studied by Svanberg et al. in extensive MD simula-
tions [13].

Recently, one of us investigated the fragmentation
statistics of large (H2O)n and (NH3)n clusters in the size
range from n = 100 to 1000 based on MD simulations. The
fragment size distributions are found to be well described
by power laws, as are observed in percolation theory and
in the Fisher model [6]. This is valid over a wide range
of excitation energies which are produced by raising the
temperature of the cluster. A compact analytical model
was derived for the average fragment size, implying the
maximum fragment size and the power law exponent of
the fragment size distribution. A preliminary account of
this work has been published as brief report [14]. Here we
would like to present a detailed description of the meth-
ods applied and the results. In addition, we will compare
the results with recent measurements of the fragmentation
behaviour of water and ammonia clusters after electron
bombardment in the very same size range [15]. Although
the experimental results do not exhibit the complete frag-
mentation pattern, they can be compared with the calcu-
lation in view of the dependence of the maximum frag-
ment size smax on the size n of the starting cluster. The
remarkable agreement of this property can, in turn, be
used to calculate, based on the derived analytical formu-
las, the average fragment size 〈s〉 and the distribution of
the fragments.

The paper will be organised as follows. In Section 2
examples of the cluster structure and their behaviour will
be discussed. In Section 3, the detailed results of the
fragmentation pattern and the analysis will be presented.
The experimental results will be shown and discussed in
Section 4.

2 Cluster structures

Both the H2O and the NH3 monomers have been as-
sumed to be rigid. The interactions of the H2O monomer
have been modeled by the TIP4P potential of Jorgensen
et al. [16], intensively used in the last two decades in sim-
ulations of aqueous solutions and clusters. The monomer
is represented by four interaction sites, three at the nu-
clei (with rOH = 0.9572 Å and θHOH = 104.52◦) and one
located on the HOH bisector, 0.15 Å from the O atom
towards the H atoms. Charges are carried only by the
hydrogens (qH = 0.52e) and the additional site (−2qH).
In addition to the Coulomb terms, the intermolecular po-
tential consists of Lennard-Jones interactions between the
oxygens only (σ = 3.15358 Å and ε = 0.648694 kJ/mol).

For the NH3 molecule, the five-site potential of Impey
and Klein [17] was employed, which has proven success-
ful in simulations of liquid ammonia and of structural
and spectroscopic properties of clusters [18]. The geom-
etry is defined by the nitrogen-hydrogen distance, rNH =
1.0124 Å, and the angle between the N-H bonds and the
C3 axis of the molecule (pointing away from the H atoms),
ϕHNC3 = 112.13◦. This potential features electrostatic
and Lennard-Jones interactions, too. The electrostatic in-
teraction is modeled by four interaction sites on each

molecule: three sites with partial charge qH = 0.462e lo-
cated at the H-atoms, and a site with a charge −3qH lo-
cated on the C3 axis, 0.156 Å from the N-atom towards
the H-atoms. Lennard-Jones interactions are modeled only
between the N-atoms by a 12-6 potential with parameters
σ = 3.4 Å and ε = 1.1649 kJ/mol.

The best suited MD integrator was found to be
the Verlet algorithm (in the quaternion representation),
known to have fair energy conservation properties. We
have used throughout a time step of 0.2 fs, typically ensur-
ing a relative energy conservation error of less than 10−4.

For both molecular species, clusters of sizes n = 100–
1000 have been prepared, with an increment of 100 mole-
cules. Their geometrical equilibrium structures have been
determined by simulated annealing. For the temperature,
the usual definition, as mean kinetic energy per degree of
freedom, was adopted. The initial configuration of each
cluster was chosen to be a sphere cut from the respec-
tive crystal. For water we considered cubic ice, which is a
metastable form occurring under normal pressure condi-
tions below 200 K. It has fcc structure, the unit cell com-
prises eight molecules and its dimension is 6.358 Å [19].
The solid state structure of ammonia (space group P213)
was extracted from the neutron diffraction study of Reed
et al. [20]. After an initial uniform heating at 150 K (by
assigning random, properly normalized velocities to all
molecules), the crystal spheres have been cooled off for
100 ps, by removing 1% of the kinetic energy at each time
step. For each cluster size, 10 relaxed configurations have
been prepared starting from different initial velocity pat-
terns. The energetically lowest lying was adopted as equi-
librium structure and was further used in the fragmenta-
tion calculations.

The equilibrium configurations for the water clusters
with n = 100, 500, and 1000 are depicted in Figure 1, and
the corresponding configurations of the ammonia clusters
are presented in Figure 2. We note that for the water clus-
ters the weight of the amorphous outer shell decreases with
increasing cluster size and the original crystalline arrange-
ment is preserved to a concomitantly increasing extent.

The binding energies of the equilibrium cluster struc-
tures are characterized by almost constant values per
molecule: Ebind/n = 46.55 kJ/mol for water and
Ebind/n = 29.51 kJ/mol for ammonia. The quantities
characterizing the geometrical structures are found to
obey power-laws. For example, the maximal extension
and the gyration radius of the H2O clusters can be very
accurately fitted by Rmax = 2.762n0.3986 and Rgyr =
1.245n0.3595, respectively, with exponents quite close to
the intuitive value of 1/3. The ammonia clusters exhibit
a similar behavior.

The water clusters show a quite interesting behaviour
in the investigated size range. The surface appears to be
definitely amorphous. In order to characterize the extent
to which the cluster structures preserve the initial crys-
talline arrangement, we defined the “crystallinity” param-
eter:

χ =
∑all atoms

i 〈ri · rc
i 〉

∑all atoms
i 〈rc

i · rc
i 〉

, (1)
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Fig. 1. Geometrical equilibrium structures of representative (H2O)n clusters.

Fig. 2. Geometrical equilibrium structures of representative (NH3)n clusters.

Fig. 3. Crystallinity χ of the (H2O)n and (NH3)n clusters as
defined in (1). The solid line is the best fit, while the dashed
line represents the n−2/3 fit.

as normalized projection of the final atomic positions, ri,
onto the corresponding crystalline positions, rc

i . The cal-
culated crystallinity values, as are depicted in Figure 3 for
H2O by open circles, suggest the cluster size dependence:
χ = 1 − an−b and the regression yields a = 1.662 and
b = 0.572 for H2O. Nonetheless, a quite reasonable fit re-
sults also by using the single parameter functional with
b = 2/3 (intuitively, the crystallinity should increase to-
wards 1 by a quantity inverse proportional to the surface-
to-volume ratio of the cluster considered spherical and
with the outer shell molecules primarily responsible for
the distortion). The optimized parameter for H2O in this

case is a = 2.761. This is a remarkable result, since this
relation has been extensively used for the size determi-
nation of microcrystallites or aerosol particles by measur-
ing independently the volume and the surface [21]. The
reason for this behaviour, which is also confirmed exper-
imentally [22], is the inconsistency of the small, spherical
surface with a 2D periodic structure. It forces the bonds
to get distorted. If we perform the same analysis for am-
monia clusters, as is shown by the black circles in Figure 3,
the result is completely different. Apparently, the surface
preserves the crystallinity by keeping the crystal planes
at the expense of the increase of the surface area. This is
nicely observed in Figure 2.

3 Simulation of the fragmentation process

The excitation mechanism preceding the fragmentation
was chosen to heat the cluster uniformly. In this way we
kept the mechanism as general as possible. Actually, all
molecules have been assigned random initial translational
and rotational velocities, normalized in accordance to each
chosen temperature (defined as the mean kinetic energy
per degree of freedom). Rather then specifying the total
excitation energy, we will refer in what follows to the corre-
sponding temperature. The excitation temperatures con-
sidered for H2O have been T = 1500, 1650, 2000, 2500, and
3000 K, corresponding to total excitation energies between
0.8Ebind and 1.6Ebind (Ebind being the total binding en-
ergy of the cluster). Since below 1500 K the clusters per-
sist statistically unfragmented, lower temperatures have
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Fig. 4. Simulated normalized fragment size distributions and
profiles Pn(s) resulted from the model (3–8) for the (H2O)1000
cluster heated at 2000 K and for the cluster (NH3)1000 heated
at 1300 K, respectively.

not been considered. For similar reasons, the NH3 clus-
ters have been heated at T = 1000, 1100, 1200, 1300, and
1500 K, corresponding to total excitation energies between
0.8Ebind and 1.3Ebind.

Each fragmentation trajectory was propagated at con-
stant energy until the overall extent of the fragment cloud
exceeded four times the initial extent, for up to 10 ps. At
the end of the trajectory, the individual fragments have
been identified by a recursive labeling algorithm, which
basically extends the fragments gradually by molecules,
which lie within a cutoff distance. The cutoff was defined
by the minimum intermolecular distance in the relaxed
cluster increased by 1 Å.

In order to achieve reliable statistics, an ensemble of
50 identical clusters was fragmented for each molecular
species, excitation temperature and cluster size, and the
resulted profiles have been averaged. Thus, the fragment
size distribution Pn(s) specifies the average number of
fragments of each particular size s resulted from the clus-
ter of size n, normalized such that

∑
s sPn(s) = 1. This

normalization practically means that Pn(s) is normalized
to both the cluster size n and the size of the ensemble.

Several revealing findings may be obtained from the
calculation of the fragmentation profiles for the relaxed
water and ammonia clusters as function of the temper-
ature and the cluster size. Typical results are presented
in Figure 2 of reference [14]. Qualitatively, they all look
quite similar so that we only show one selected example
for (H2O)1000 and (NH3)1000 in Figure 4. In a quantita-
tive way, they depend both on the temperature and on
the system studied. We also note that the optimized clus-
ter structures were used in the analysis, since amorphous
and crystalline clusters gave different profiles for the same
size. The results can be summarized as follows:

(1) the distributions are dominated by small fragments.
The general fall off goes over four orders of magnitude;

(2) all profiles are affected by quite significant statistical
fluctuations in the region of larger fragment sizes;

(3) the profiles for larger excitation temperatures imply
relatively more small fragments, reflecting the fact

Fig. 5. Dependence of the power law exponents φn of the frag-
ment size distributions on the size of the initial water clusters
for different temperatures.

that larger energy inputs split the original cluster into
smaller fragments;

(4) though broadened by statistical fluctuations in the re-
gion of larger and inherently less frequent fragment
sizes, the profiles for both molecular species clearly
exhibit a power-law behavior of the kind

Pn(s) ∼ s−φn , (2)

similarly to the thoroughly investigated percolation
clusters [4] or the results of the Fisher model [6–8];

(5) the most important quantitative difference between
the H2O and NH3 clusters predicted by the calcula-
tions regards the very excitation temperature range in
which the power-law behavior is present — the tem-
peratures applying to H2O are larger roughly by a fac-
tor of 2, reflecting, as discussed previously, the larger
corresponding binding energies Ebind/n.

The fragmentation of the H2O clusters around and
above T = 2500 K (Eexc ≥ 1.3Ebind) seems to be some-
what better described by stretched exponentials. In the
case of NH3, the transition to stretched exponentials oc-
curs at T = 1500 (i.e. again for Eexc ≥ 1.3Ebind).

The features of the fragmentation profiles are similar
to those found in the distributions obtained by Svanberg
et al. [13] from simulations of the collision dynamics of
large water clusters.

The plots of the power law exponent, φn, as shown for
the water clusters in Figure 5, are different for the dif-
ferent excitation temperatures and indicate also a weak
dependence on the cluster size. Similar results have been
obtained for ammonia clusters [14]. The cluster size de-
pendence can again be conveniently described by a power
law of the type

φn = bn−c. (3)

The parameters b and c depend, in turn, on the tempera-
tures by

b(T ) = b0 + b1 exp(−b2T ), (4)
c(T ) = c1 exp(−c2T ). (5)
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Fig. 6. Maximum fragment size smax,n as a function of the
size n of the initial (H2O)n cluster.

There are two properties of the fragmentation distribu-
tions with less detailed information. These are the max-
imum fragment size smax,n and the average fragment
size 〈s〉n. The calculated distributions of maximum frag-
ment sizes smax,n for the water clusters are plotted in Fig-
ure 6. The plots are expected to be delimited by the first
bisector, smax,n = n, corresponding to the limiting case
T = 0 (where no fragmentation takes place), and the hori-
zontal line smax,n = 1, corresponding to T → ∞ (when all
clusters are completely fragmented down to monomers).
The results are found to vary linearly with the cluster size
and the slopes decrease with increasing temperature. Thus
they can be represented by:

smax,n = 1 + a(n − 1). (6)

The values obtained by regression for the parameter a
suggest that its temperature dependence is a simple ex-
ponential decay,

a(T ) = a1 exp(−a2T ). (7)

The temperature fits yield a1 = 33.5827 and a2 = 2.4472×
10−3 K−1 for the water clusters, while for the ammonia
clusters we get a1 = 3298.27 and a2 = 7.8352×10−3 K−1.

The cluster size dependences of the average fragment
size 〈s〉n for the various excitation temperatures are shown
in Figure 7 for the H2O clusters. Absolutely similar depen-
dences are obtained for the NH3 clusters [14]. The profiles
are again delimited by the lines 〈s〉n = n and 〈s〉n = 1 for
the same reasons as in the case of smax,n. By definition,
the average fragment size is given by:

〈s〉n =
∑smax,n

s=1 s2Pn(s)
∑smax,n

s=1 sPn(s)
·

An approximate analytic expression may be readily ob-
tained by replacing the sums by integrals (

∑smax,n
s=1 · · · �∫ smax,n

1 · · · ds) and by using the power-law distribution (2):

〈s〉n =
2 − φn

3 − φn

s3−φn
max,n − 1

s2−φn
max,n − 1

· (8)

Fig. 7. Average fragment size 〈s〉n as a function of the size
of the initial H2O cluster from MD simulations (symbols) and
calculations based on (8).

For known values of the power law exponent φn and of
the maximum fragment size smax,n, this relation should
provide consistently an estimate of the average frag-
ment size 〈s〉n. For practical applications, however, this
is hardly the case. Whereas measurements are likely to
provide smax,n and perhaps 〈s〉n, the fragment size distri-
bution itself is more difficult to obtain. Instead, relation
(8) can be used in conjunction with the n-dependence of
smax,n (6) to deconvolute the fragmentation information
obtaining φn, and thus to predict the fragment size distri-
bution.

Relation (8) with the input from (6) and (3) define
explicitly the average fragment size 〈s〉n as a function of
the cluster size n, with adjustable parameters b and c. In
fact, we used this set of equations to simultaneously fit the
cluster size dependences of the average fragment size and
of the power law exponents. The optimized values of the
parameters b and c for the various temperatures following
the exponential dependences of (4) and (5) yields for the
H2O clusters: b0 = 3.1976, b1 = 494.22, b2 = 3.1308 ×
10−3 K−1, c1 = 9.3408, and c2 = 2.2969× 10−3 K−1. The
values for the NH3 clusters are: b0 = 3.1895, b1 = 233574,
b2 = 8.9334× 10−3 K−1, c1 = 15.3306, and c2 = 3.4363×
10−3 K−1. The predictions for the average fragment size
〈s〉n are also shown in Figure 7.

The usefulness of model (8) can be appreciated from
Figure 4, where, along with the simulated fragment size
distributions for the cluster (H2O)1000 heated at 2000 K
and for the cluster (NH3)1000 heated at 1300 K, respec-
tively, there have been plotted the corresponding curves
resulted by using model (8) with (6) and (3), together
with the temperature fits of the implied parameters a(T ),
b(T ), and c(T ) according to (7), (4), and (5).

Some discrepancies between model and observations
occur in the low temperature region due to the inherently
more significant fluctuations. To overcome these, much
larger ensembles of observations are needed. Some dis-
crepancies at large excitation energies (beyond 1.3Ebind)
are caused by the gradual transition of the profiles into
stretched exponentials. However, the fair overall agree-
ment justifies the applicability of model (8) for predicting
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exponents of the fragment size distribution from maxi-
mum and average fragment sizes.

4 Experimental results and discussion

Experimental results on the fragmentation of neutral clus-
ters are still quite rare because of the ubiquitous prob-
lem of fragmentation when the clusters are ionised for the
detection process. This is a special problem for weakly
bound systems, since the ionic potential curves are usu-
ally much stronger bound and shifted to smaller distances.
Thus when going from the neutral to the ionic configura-
tion, highly excited vibrational states are reached, which
lead subsequently to severe fragmentation. This fact is
much less dramatic for systems with delocalised electrons,
since in such cases the ground state of the ionic system
can be reached provided the ionisation energy can be ad-
justed close to the threshold region. Typical examples are
the photoionisation of aromatic molecules or metals. Re-
cently, we found an interesting way to apply such a pro-
cedure also to weakly bound systems like rare gases or
hydrogen bonded systems. We dope these clusters with
a single sodium atom and apply photoionisation for the
detection [15,23].

The experiments have been carried out in a molec-
ular beam machine which has been described in detail
in [23]. The clusters are generated by an adiabatic ex-
pansion through nozzles of conical shape. By varying the
pressure and the temperature, the size distribution can
be shifted to nearly every desired size. New scaling laws
which relate the source conditions to the actual sizes of
water and ammonia clusters are given in [15].

Typical parameters are a conical nozzle with a diam-
eter of 79 µm, an opening angle of 2α = 25.0◦, and a
length of l = 4 mm as well as temperatures between 412
and 480 K and pressures between 3.5 and 18.0 bar. The
clusters are detected in a reflectron time-of-flight mass
spectrometer. The design of the ion source allows us to
simultaneously use laser photons and electrons for ionisa-
tion. The sodium doped water clusters are detected close
to the threshold for ionisation at 3.2 eV which can easily
be reached by dye lasers. For the ammonia clusters we used
an alternative approach. Here also the (1+1)-resonance
enhanced two photon ionisation (REMPI) process via the
Ã 1A′′

2 v = 6 state at 193 nm worked up to cluster sizes of
more than n = 3000. Apparently, the lifetime of this state
in the cluster environment is long enough to be reached by
the second photon in the nanosecond regime. The results
are corrected for possible multi-photon processes [24]. In
addition, there is a certain amount of excess energy in
the system which, however, does not lead to the evapo-
ration of more than 25 molecules. This result is within
the usual errors of the size determination in this type of
experiments.

Having established a reliable method to measure the
size distributions of the molecular clusters by photoion-
isation, we can compare them with the results obtained
by the ionisation with electron impact under the same ex-
perimental conditions. The result of such a measurement
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Fig. 8. Measured maximum fragment size as function of the
initial cluster size for water and ammonia clusters. The frag-
mentation is caused by electron impact at 550 eV and 243 eV,
respectively, close to the maximum of the distribution.

gives directly the maximal fragment size. In Figure 8 these
maximal fragment sizes are depicted for (NH3)n clusters
obtained at electrons energies of 243 eV and (H2O)n clus-
ters at 550 eV. The different electron energies have been
chosen to be close to the maximum of the fragmentation
probabilities of the respective system. The results of elec-
tron impact are corrected for doubly ionised clusters [15].
In both cases we find a linear dependence on the cluster
size n, but the absolute numbers are about a factor of two
smaller for ammonia.

This behaviour is exactly predicted in the present cal-
culations in Figure 6 and the relation (6). Even if we take
into account that in the experiment log-normal distribu-
tions are measured, the conclusions are the same, since the
convolution of a log-normal distribution with a linear be-
haviour results in a log-normal distribution. What, in fact,
is plotted in Figure 6 are the maxima of these distribu-
tions. Thus, we are now able to derive from the slope of the
measured curve the temperature which leads to the same
fragmentation pattern for smax,n, namely T = 1573 K for
water and T = 1134 K for ammonia clusters. Given these
values, we can go one step further and calculate the frag-
ment size distribution Pn(s) according to (2) and the aver-
age fragment size 〈s〉n by applying (8). They will look very
similar to the curves displayed in Figure 4. We note that
the experimental result of a lower excitation temperature
for ammonia clusters is in line with all the calculations
and is certainly a reflection of the lower binding energy
of this cluster. In this way the combination of MD simu-
lations using realistic interaction potentials, the analysis
based on percolation theory and restricted, but reliable
experimental data lead to a complete description of the
fragmentation process. We note that also in the evapora-
tion limit a linear behavior of the fragment size as func-
tion of the original size should result. We found for the
electron impact ionisation of large Arn clusters at 70 eV
such a behavior [25]. But in contrast to the present result,
the number of evaporated particles was much smaller, in
the range of tens compared to hundreds in the power-law
regime. The direct experimental proof, the measurement
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of the product size distribution, was not carried out in the
present experiment.

What is interesting to note is the fact that interaction
of electrons in the energy range of a couple of hundred
electron volts can be described by a fragmentation theory
that is simply based on heating the cluster. The expla-
nation of these measurements given in reference [15] was
essentially based on the energy dependence of the yield of
the ejected particles which is proportional to the stopping
power. It followed precisely what is known from the sput-
tering of solid material. The sputtering of these weakly
bound insulator materials is dominated by electronic in-
teractions and consists of three separate processes. First,
the incoming particle interacts with the target and gener-
ates electronic excitations and ionisations along the track.
Second, these excitations deposit energy into the solid as
a result of non-radiative relaxations which appear as vi-
brational excitation of the target molecules. This energy
has to be transported to the surface where, finally, the
particles evaporate. Thus the yield is always proportional
to the stopping power (dE/ds). The absolute values of
the yield, however, are two orders of magnitude larger for
clusters than in the case of the solids. This is explained by
a simple model based on the fast distribution of heat after
the excitation of a small finite sample. The spread of this
energy can be described by the heat equation of a temper-
ature field T (t, r), which is a function of the time t and the
spatial coordinate r. After 20 ps the heat has spread over
10 nm. Obviously the cluster cannot accommodate the
excitation energy and nearly evaporates completely. We
note that already in this part of our previous explanation
a temperature field had to be invoked in order to explain
the data. Finally we note that we have also observed other
cases where the typical ingredients of the present model,
the power law of the fragment size distribution, is not ob-
served. After the vibrational excitation of the OH stretch
mode in large water clusters, the fragment distribution did
not show a decreasing power law, but a maximum of the
intensity around s = 6 [26]. In this case, the dynamical
process of the coupling of the intramolecular vibrations to
the dissociative intermolecular motion can apparently not
be described by simply heating the system.

This work was supported by the Deutsche Forschungsgemein-
schaft and the Graduiertenkolleg 782. We thank Dr. S. Schütte
and Dr. C. Bobbert for measuring the data of Figure 8.
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15. C. Bobbert, S. Schütte, C. Steinbach, U. Buck, Eur. Phys.

J. D 19, 183 (2002)
16. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W.

Impey, M.L. Klein, J. Chem. Phys. 79, 926 (1983)
17. R.W. Impey, M.L. Klein, Chem. Phys. Lett. 104, 579

(1984)
18. T.A. Beu, C. Steinbach, U. Buck, J. Chem. Phys. 117,

3149 (2002)
19. L.G. Dowell, A.P. Rinfret, Nature 188, 1144 (1960)
20. J.W. Reed, P.M. Harris, J. Chem. Phys. 35, 1730 (1961)
21. J.P. Devlin, J. Sadlej, V. Buch, J. Phys. Chem. A 105, 974

(2001)
22. J.P. Devlin, C. Joyce, V. Buch, J. Phys. Chem. A 104,

1974 (2000)
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