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The interface between the vapor and liquid phase of quadrupolar-dipolar fluids is the seat of an
electric interfacial potential whose influence on ion solvation and distribution is not yet fully under-
stood. To obtain further microscopic insight into water specificity we first present extensive classical
molecular dynamics simulations of a series of model liquids with variable molecular quadrupole
moments that interpolates between SPC/E water and a purely dipolar liquid. We then pinpoint the
essential role played by the competing multipolar contributions to the vapor-liquid and the solute-
liquid interface potentials in determining an important ion-specific direct electrostatic contribution to
the ionic solvation free energy for SPC/E water—dominated by the quadrupolar and dipolar parts—
beyond the dominant polarization one. Our results show that the influence of the vapor-liquid inter-
facial potential on ion solvation is strongly reduced due to the strong partial cancellation brought
about by the competing solute-liquid interface potential. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4799938]

I. INTRODUCTION

At the macroscopic interface between a liquid (l) and
its vapor (v) phase there is a spatial inhomogeneity that
induces a charge imbalance, producing an electric field
and consequently a potential difference across the interface,
φlv = φl − φv . Despite extensive molecular simulation stud-
ies at both the classical and quantum mechanical levels over
the past few decades,1–15 a complete understanding of this po-
tential, how it depends on the characteristics of the fluid stud-
ied, and its role in the solvation of ions is not yet at hand.16, 17

Such an understanding has become a pressing matter, because
there is currently much interest in constructing mesoscopic
models of electrolytes near vapor-liquid interfaces and solid
membrane surfaces and in nanopores.16–27 It is also now clear
that the value of the interface potential observed experimen-
tally depends on the probe used: although electron diffraction
and holography techniques may measure the full interface po-
tential, electrochemical techniques involved in ion solvation
seemingly do not.13–15, 17

Until now mesoscopic approaches to ion distribution
have either completely neglected the contribution of the
interfacial potential20, 23–25 or, as already demonstrated in
Ref. 21 and discussed in detail here, severely overestimated
its importance by treating finite size solutes as point test
charges.22 For finite size ions a second microscopic solute-
liquid interface potential, φls = φl − φs, exists, defined as
the potential difference between the bulk liquid (l) and the
center of a neutral solute (s) (Fig. 1) [whose size is deter-
mined in classical Molecular Dynamics (MD) simulations by

a)Present address. Electronic mail: john.palmeri@univ-montp2.fr

the short range repulsion of the Lennard-Jones (LJ) potential].
This second solute-liquid contribution is missed if the ions are
approximated as point test charges. The potentially important
role played by this microscopic potential in determining ion
distribution near inhomogeneities needs to be clarified10, 11 in
order to provide deeper theoretical insight into both molecular
simulations and experimental results. Furthermore, the cou-
pling between the quadrupolar and dipolar contributions to
the interface potential and their respective roles in governing
ion distribution need to be reconsidered. To do so we present
extensive classical molecular dynamics simulations of model
liquids that interpolate between SPC/E water (a classical three
site partial charge model28) and a purely dipolar liquid.

In physical terms our study can be viewed as part of
the quest, still far from complete, for the physical compo-
nents of the position dependent ionic Potential of Mean Force
(PMF), �(r), near dielectric interfaces and surfaces arising
from solvent-ion and ion-ion interactions after the solvent
degrees of freedom have been integrated out.16, 20–25 We fo-
cus uniquely on the poorly understood role played by the
interfacial potential in determining the electrostatic contri-
bution to ion solvation. Indeed, the extremely large discrep-
ancy between the dilute limit ionic PMF obtained from MD
simulations and those predicted using an approximate meso-
scopic approach incorporating the contribution of the interfa-
cial potential in the point ion approximation led the authors of
Ref. 21 to completely abandon their dilute limit mesoscopic
approach; they opted rather for extracting the dilute limit
ionic PMF directly from MD simulations and then injecting it
into a generalized Poisson-Boltzmann equation to study salt
concentration effects. In a more recent work concerning the
optimization of the MD parameters of a non-polarizable
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model by fitting to experiment, the same authors and collab-
orators attempted to get around the ambiguities plaguing the
contribution of the vapor-liquid interfacial potential in deter-
mining the electrostatic contribution to ion solvation by fit-
ting only quantities independent of this contribution.26 Al-
though other contributions to the ionic PMF and solvation-
free energy, such as the hydrophobic and dispersion ones,
may play non-negligible roles and therefore be important for
interpreting molecular simulations and understanding experi-
ments, these contributions will not be considered here (as they
are already fairly well understood thanks to recent progress in
this area).20–26

One major impediment to obtaining the physically iden-
tifiable mesoscopic contributions to the ionic PMF, �, thus
arises from questions concerning the amplitude and sign of
the vapor-liquid interface potential and the role it plays in
determining the ionic solvation free energy. In order to ad-
dress these questions we compare a direct evaluation from
MD simulations of the two relevant electrostatic contributions
to the ionic solvation free energy for SPC/E water—a direct
interfacial one that does not account for solvent polarization
due to the ionic charge and a polarization one that does—
with simplified approaches previously adopted in the litera-
ture (namely, a direct one approximating ions as point test
charges and a simple Born-type polarization approximation,
defined below).

II. VAPOR-LIQUID INTERFACE POTENTIAL
AND IONIC PMF: STATE-OF-THE-ART

Near a planar vapor-liquid interface the local ion con-
centration can be expressed in terms of the PMF, �(z), as
ρ i(z) = ρ il exp [−�(z)/kBT], where z is the normal coordinate
and ρ il is the ionic concentration in the bulk liquid (where
� is taken to vanish). The total ion solvation free energy can
then be expressed as �Gion = −�(zv), where zv is in the va-
por phase (see Fig. 1). In theoretical studies of both vapor-
liquid water interfaces and membrane-liquid surfaces, it has

FIG. 1. Electric potential variation, δφ(z), across the vapor-liquid and the
liquid-solute interfaces for the neutral LJ solute I0 immersed in liquid water
(SPC/E), at z = 50 Å. The Gibbs dividing surface (GDS) of the macroscopic
interface and the solute position are indicated by dashed vertical lines.

sometimes been hypothesized21–24 that the bare interface po-
tential enter the PMF via a simple direct electrostatic contri-
bution �′

pot(z) = q[δφ(z) − φlv], where q is the ion charge,
δφ(z) = φ(z) − φv is the local value of the potential differ-
ence, and φlv = δφ(zl) (zl is at the center of the liquid slab far
from the interface). This approach, which amounts to treat-
ing a finite size ion as a point test charge q,21–24 is critically
examined here for SPC/E water.

Classical molecular dynamics simulations predict poten-
tials on the order of −0.5 V for both vapor-liquid inter-
faces and membrane-liquid surfaces and, if used in the point
ion approximation, �′

pot, would seemingly yield the domi-
nant contribution (∼20kBT for monovalent ions) to the PMF
over a substantial part of the interfacial region.21 This ap-
proximation, however, predicts incorrect results for the PMF
and corresponding ion density, when compared with MD
simulations, both in the infinitely dilute limit (as already
pointed out in Ref. 21) and when incorporated into a modi-
fied Poisson-Boltzmann approach (to study higher electrolyte
concentrations22): neither the strong build-up of anions near
a strongly hydrophobic uncharged surface (Ref. 22, Fig. 4(a))
nor the variations in the dilute limit of the PMF near a mem-
brane surface (Ref. 21, Fig. 3) predicted by this approach are
in agreement with MD simulations. This approximation also
yields a very substantial, albeit seemingly undetected, direct
contribution to the ionic free energy of solvation,

�G′
0 = −�′

pot(zv) = qφlv, (1)

on the order of 25kBT. Disturbingly, the reasonable agreement
between the experimental results for the surface tension of
electrolyte solutions and certain promising mesoscopic the-
oretical approaches that neglect the interface potential com-
pletely would be severely disrupted if such large interfacial
potentials were taken into account.23, 24 This situation be-
comes even more complicated if one considers that more “re-
alistic” quantum mechanical calculations can lead to positive
interface potentials of much higher amplitude (+3 eV),12–14

but no signature of such a potential is seen in recent ab initio
simulations of ion solvation.15

III. IONIC FREE-ENERGY OF SOLVATION

The electrostatic (ES) contributions to the total ion solva-
tion free energy for the models studied here can be extracted
directly from the MD simulations via

�Gion
ES = �G0 + �Gpol (2)

with

�G0 = qφsv = q(φlv − φls) (3)

and

�Gpol � q
(
φion

sv − φsv

)
/2, (4)

where φsv = φs − φv = φlv − φls and φion
sv = φlv − φion

ls are,
respectively, the total vapor-liquid-solute potential variations
for neutral and charged solutes. The ion solute-liquid in-
terface potential, φion

ls = φion
l − φion

s , is the potential differ-
ence between the bulk liquid and the center of the charged
ion (with the bare Coulomb potential due to the ion itself
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subtracted out). The first, direct, term, �G0 = qφsv , may
be regarded as the electrostatic free energy of solvation of
an ion placed in the potential φsv created around its corre-
sponding neutral counterpart; the second polarization term,
�Gpol, obtained from an approximate generalized “charg-
ing” method,29, 30 arises from the response of the solvent to
the ion (which generates an overall potential variation φion

sv

much larger in amplitude than φsv).30 Because φlv is ion in-
dependent, the polarization contribution can be simplified to
�Gpol � q(φls − φion

ls )/2 and therefore be obtained from bulk
simulations (this contribution is the microscopic analog of
the mesoscopic Born one presented below). Since (φls − φion

ls )
∝ q vanishes in the limit q → 0, �Gpol ∝ q2, as required for
a polarization contribution (and also seen in the usual meso-
scopic Born term below).

A. Mesoscopic Born model

Within the mesoscopic Born model, an ion is modeled
as a point charge q sitting in its spherical cavity of effective
radius Ri in bulk water treated as a continuum of dielectric
constant εw. The radial electric potential around the central
ionic charge, ϕion(r), determines the Born approximation for
the polarization contribution via

�GB
pol = q

2
lim
r→0

[ϕion(r) − ϕ0(r)] = q2

8πε0Ri

(
1

εw

− 1

)
,

(5)
where ε0 is the vacuum permittivity, ϕ0(r) is the bare
Coulomb potential, and εw � 78 is the dielectric constant of
bulk water at room temperature. Although this type of polar-
ization contribution (∼100–180kBT) typically dominates the
ionic solvation free energy for the ions studied here, it is nei-
ther clear how accurate the simple Born approximation is (due
to the neglect of potentially important ion-solvent correlations
near the ion), nor how to choose the best Ri.

Furthermore, despite its dominant role in the global ionic
free energy of solvation, the polarization contribution to the
local ionic PMF, �(z), is seemingly not the dominant contri-
bution over a significant part of the interfacial region, which
means that the role of other contributions must be clarified.21

Although a Born-type polarization term is commonly in-
corporated in mesoscopic approaches to the free energy of
solvation (or PMF), the direct term, arising from the bare
interfacial potential, is either completely neglected without
justification20, 23–25 or strongly overestimated by incorrectly
assuming φls = 0 in �G0 (Eq. (3)), which leads to the approx-
imation �G′

0 = q φlv (Eq. (1)) for the direct contribution [or
�′

pot(z) in the PMF, which includes only the contribution of
the vapor-liquid interface21, 22 and neglects entirely that of the
solute-liquid one] (see Fig. 1).

IV. MODELS AND METHODS

We compare a direct evaluation from MD simulations
of the two terms contributing to �Gion

ES , namely �G0 and
�Gpol, for SPC/E water with the simplified approximations
presented above, respectively, �G′

0 and �GB
pol. In order to

shed further light on the interplay between the solvent molec-

ular dipole and quadrupole moments (and thus water speci-
ficity), a series of molecular models having the same perma-
nent dipole moment as SPC/E, but different quadrupolar ones,
were first generated by reducing the H–O–H angle γ , while
keeping fixed both the original partial charges on each site
and the distance between the oxygen and the midpoint be-
tween hydrogen atoms. The choice of including the variable
quadrupole moment models was dictated by the need to find
a smooth link via MD simulations between a realistic wa-
ter model (SPC/E) and the simplified purely dipolar models
often studied (due to the inherent difficulty of the problem)
using approximate theoretical methods.31, 32 Due to symme-
try the interfacial contributions under scrutiny here for liquids
possessing molecular dipole and quadrupole moments must
vanish for symmetric purely dipolar models. We also would
like to test the approximate formulae for the quadrupolar con-
tribution in a more general setting (from SPC/E to a purely
dipolar model) and to shed light on the coupling between the
dipolar and quadrupolar contributions. For all but one molec-
ular model the SPC/E parameters were maintained for the
Lennard-Jones interaction centered on the oxygen atom. For
the nth molecule of each liquid model we define the molec-
ular dipole moment pn = ∑

j qj rjn and quadrupole moment
tensor (Qn)αβ = 3

∑
j qj xjn,αxjn,β , with xjn, α the αth Carte-

sian component of the position vector rjn of partial charge
qj (j = 1, 2, 3) with respect to the center of charges
within molecule n. We can then compute the macroscopic
polarization

P(r) =
〈∑

n

pnδ(r − rn)

〉
(6)

and the macroscopic quadrupole moment density

Qαβ(r) = 1

6

〈∑
n

(Qn)αβδ(r − rn)

〉
(7)

directly from the simulations as ensemble averages.2

The local electric charge density, ρ(r), can be evaluated
directly by extracting the partial charge density associated
with the particular molecular model; and the associated elec-
tric field E and potential φ can then be obtained by integration
of the Poisson equation in appropriate coordinates:

∇2φ = −∇ · E = − ρ

ε0
. (8)

The mean electric field along the direction normal to the pla-
nar vapor-liquid interface, at distance z is written in Cartesian
coordinates as

Ez (z) =
∫ z

zv

ρ
(
z′)

ε0
dz′, (9)

where ρ(z′) represents the average electric charge density
(evaluated within the scope of MD simulations as the vol-
ume density of the sum of partial charges associated with a
particular molecular model found in the bin corresponding to
the position z′). The coordinate zv is the origin of integra-
tion in the vapor phase (far from the interface). Similarly, in
spherical coordinates (appropriate for the curved solute-liquid



154702-4 Horváth et al. J. Chem. Phys. 138, 154702 (2013)

TABLE I. The system parameters [γ is the H–O–H angle; μ0 and Q0
xx are the permanent molecular dipole and quadrupole moments; ρl is the liquid density

at the center of the slab (estimated error of ±0.005 g/cm3)], total interfacial potential φlv , the corresponding quadru- (φQ
lv ) and dipolar (φD

lv ) contributions, and

the “isotropic” quadrupolar approximation (φQ
lv,est, Eq. (19)); estimated standard error of ±0.5 mV for the vapor-liquid interface potentials of the studied liquid

models (obtained using the block averaging method).

Model γ (deg) μ0 (D) Q0
xx (DÅ) ρl (g/cm3) φlv (mV) φlv − φD

lv (mV) φ
Q
lv (mV) φ

Q
lv,est (mV) φ

Q
lv /φlv

SPC 109.5 2.347 8.131 0.981 − 600.3 − 558.8 − 559.2 − 558.6 0.932
SP9 100.0 2.347 5.775 0.892 − 445.8 − 361.4 − 360.1 − 360.2 0.808
SP8 87.6 2.347 3.736 0.787 − 254.8 − 206.5 − 206.8 − 205.9 0.811
SP7 75.0 2.347 2.394 0.698 − 123.6 − 116.1 − 116.9 − 117.1 0.946
SP5 54.7 2.347 1.089 0.611 − 21.4 − 46.3 − 46.2 − 46.6 . . .
S2N 0 2.347 0 0.556 56.8 0.2 0 0 0
S2L 0 4.065 0 0.696 284.6 − 0.4 0 0 0
S2D 0 2.347 0 0.658 − 0.8 − 0.4 0 0 0

interface), the mean electric field is given by

Er (r) = 1

r2

∫ r

0

ρ
(
r ′) r ′2

ε0
dr ′. (10)

The total charge density can also be expressed as a mul-
tipole expansion,33

ρ = −∇ · P +
∑
α,β

∇α∇βQαβ + · · · , (11)

here truncated after the quadrupolar term. The dipolar and
quadrupolar electric fields and potentials can then be obtained
from the dipole moment density P and quadrupole moment
density Q, respectively:

∇2φD = −∇ · ED = 1

ε0
∇ · P = − 1

ε0
ρD, (12)

∇2φQ = −∇ · EQ = − 1

ε0

∑
α,β

∇α∇βQαβ = − 1

ε0
ρQ. (13)

After computing the full interface potential from Eq. (8), we
compare it with the sum of the dipolar and quadrupolar con-
tributions computed from Eqs. (12) and (13) to assess the ac-
curacy of the truncated multipole expansion.

The dipolar contribution to the total electric field can be
obtained from ρD = −∇ · P, the mean dipolar charge density
created by the distribution of the macroscopic dipole moment
density P, yielding for the z-component:

ED
z (z) = −Pz (z)

ε0
, (14)

since Pz vanishes at zv in the vapor phase, far from the in-
terface region. Similarly, the dipolar component of the radial
field in spherical coordinates, appropriate for the solute-liquid
interface, reads:

ED
r (r) = −Pr (r)

ε0
, (15)

where Pr(r) represents the radial distribution of the density of
the dipole moment. The dipole moment density P obtained
from the MD simulations as ensemble averages of molecular
dipole moments is presented in detail below for the planar l-v
interface (Sec. V A).

The determination of the mean electric field (or charge
density) permits the calculation of δφ (z) = φ (z) − φ (zv), the

local electric potential difference evaluated at position z in the
vicinity of the interface:

δφ (z) = −
∫ z

zv

Ez(z
′)dz′ = 1

ε0

∫ z

zv

ρ(z′)(z′ − z) dz′. (16)

Similarly, the dipolar local potential profiles, δφD(z), can be
obtained from the corresponding electric field, ED

z (z) (or
charge density, ρD).

The quadrupole moments of the models SPC, SP9-
SP5, and S2N range from the SPC/E value down to zero
(Table I). Because both dipolar S2N and S2L models are
asymmetric, a symmetric dumbbell-like model (S2D) was
also investigated (with two LJ spheres on both ends of the
dipole). Ions are modeled as simple point charges carrying
an LJ sphere. Simulations of the vapor-liquid interface were
carried out using a modified parallel version of the molecular
dynamics package Amber 934 and a slab geometry methodol-
ogy similar to the one often used in the literature: 1000 liq-
uid molecules placed in a rectangular unit cell of dimensions
31.04 × 31.04 × 91.04 Å3 occupying roughly the middle one-
third of the available space and generating two vapor-liquid
interfaces.35, 36 A Lennard-Jones interaction potential is cen-
tered on the solvant oxygen atom, characterized by the SPC/E
parameters σ = 3.1657 Å and ε = 0.1553 kcal/mol. In the
“bulk” ion solvation simulations, the system comprised a cu-
bic cell of 1000 water molecules, with one solute immersed at
its center.

The ion properties are summarized in Table II. Each ion
is modeled by a simple point charge, a Lennard-Jones po-
tential defined by σ and ε and, when polarizable models are
analyzed, a polarizability. The cross parameters for the ion-
water Lennard-Jones interaction are determined via Lorentz-
Berthelot mixing rules.

TABLE II. Lennard-Jones parameters σ and ε and polarizability α for ions.

Ion q (e) σ (Å) ε (kcal/mol) α Ref.

Na+ 1 2.350 0.13 0.24 37
F− −1 3.168 0.2 0.974 38
Cl− −1 4.339 0.1 3.25 39
Br− −1 4.700 0.1 4.53 40
I− −1 5.150 0.1 6.9 40
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Periodic boundary conditions were applied in all three
directions. The long-range charge-charge, charge-dipole, and
dipole-dipole interactions were treated by the particle-mesh
Ewald summation method for both the charge and dipole
moments.41 For computational efficiency, in the polarizable
simulations, an extended Lagrangian method was utilized to
compute the induced dipole moments, regarded as additional
dynamic variables.42

A cutoff radius of 10 Å was used for the short-ranged
non-bonded LJ interactions and for the real space compo-
nent of the Ewald summation. The geometries of the liquid
molecules were constrained by applying the SHAKE algo-
rithm with a relative geometric tolerance of 10−4. The equa-
tions of motion were integrated using the velocity Verlet al-
gorithm with a default time step of 1 fs.43 In order to avoid
occasional drifts of the slab along the z-axis normal to the in-
terface, the center-of-mass (COM) velocity was removed ev-
ery 1000 steps. Configurations were saved every 100 fs in the
output trajectories and each such frame was readjusted with
respect to the z-axis, to keep the COM of the electrolyte fixed
relative to the simulation cell.

Starting from the initial configuration of each simulated
system, an energy minimization was performed, followed by a
1 ns NVT equilibration at 300 K for the slab systems. For sim-
ulations of bulk water ion solvation the equilibration process
was performed in the NPT ensemble, using a weak-coupling
pressure regulation with a target pressure of 1 bar. Subse-
quently, in both cases, at least 5 ns of measurements in the
NVT ensemble were carried out, using the Berendsen ther-
mostat with the configurational degrees of freedom coupled
to a heat bath with coupling constant τ = 1 ps.44 In the spe-
cial case of polarizability-enabled simulations, the degrees of
freedom related to the induced dipole moment of the ion were
independently coupled to a 1 K heat bath (relaxation time
τ dip = 10 ps), ensuring a proper handling of the electronic de-
grees of freedom.45 All computed profiles spanning the vapor-
liquid interface were obtained as ensemble averages of the in-
stantaneous profiles evaluated in thin slabs (bins) of thickness
0.2 Å parallel to the interface. For the radial quantities mea-
sured in the bulk simulations of ion solvation, equally dis-
tanced, 0.1 Å thick, spherical shell bins have been employed.
Due to the cubic dimensions of the simulation box the radial
profiles are relevant up to approximately 15 Å.

V. MD SIMULATION RESULTS

The MD simulation results show that the bulk region den-
sity decreases with decreasing molecular quadrupole moment
(at constant dipole moment), varying by nearly a factor of
two in going from SPC/E to the lowest density model, S2N
(Table I). For the models possessing quadrupole moments,
SPC/E – SP5, the density decreases by less than 40%, de-
spite a decrease by a factor of 8 in the molecular quadrupole
moment. This density variation is an expected physical con-
sequence of the reduction in water coordination as the molec-
ular quadrupole moment decreases. The S2N and S2L mod-
els form purely dipolar liquids with a characteristic chain-like
structure arising from the head-to-tail alignment of the dipole
moments and a lower bulk density due to the decrease in hy-

FIG. 2. The dipole moment density, Pz(z), for all studied liquids at the vapor-
liquid interface. Dashed vertical lines represent the GDS of both interfaces for
SPC/E.

drogen bond coordination from four to two. The vapor-water
interfacial thickness is found to be approximately 3.8 Å at
300 K for SPC/E and increases along with the slab thickness
as the molecular quadrupole moment decreases.

A. Dipolar ordering

Orientational (dipolar) ordering of water takes place near
the l-v interface, which can be seen by plotting Pz(z) for the
series of model liquids (Fig. 2). Orientational double layers
were found only for SPC/E and SP9 with the outer layer
dipoles pointing preferentially towards the vapor phase and
in the opposite direction in the inner layers (closest to the slab
center). For models with lower molecular quadrupole mo-
ments the molecular dipoles point towards the liquid phase.
Because of the asymmetry created by the oxygen LJ sphere,
asymmetric purely dipolar liquids (S2N and S2L) still pos-
sess orientational ordering in the interface region due to the
hydrophobic forces tending to exclude the oxygen LJ sphere
from the liquid slab.

B. Vapor-liquid interface potential:
Multipole contributions

In order to illustrate how various multipole moments con-
tribute to the vapor-liquid interface potential, we obtained
the electric potential difference by integration of the Poisson
equation from the charge density obtained from the first two
terms of the multipole expansion,2, 10

ρ(z) ≈ ρD(z) + ρQ(z) = − d

dz

[
Pz (z) − d

dz
Qzz (z)

]
,

(17)
leading to the first two (dipolar and quadrupolar) contribu-
tions to the interface potential:

δφDQ(z) ≡ δφD(z) + δφQ(z) =
∫ z

zv

Pz(z)

ε0
dz − Qzz(z)

ε0
,

(18)
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FIG. 3. (a) Total, (b) dipolar, and (c) quadrupolar potential profiles, δφ(z)
(in volts) for the studied liquids characterized by positive molecular
quadrupolar moments.

since Qzz is taken to vanish in the vapor phase and Pz vanishes
in both bulk (vapor and liquid) phases. For the planar interface
higher order moments do not contribute.

The “exact” model interface potential profile and the cor-
responding dipolar and quadrupolar contributions (Eq. (18))
obtained directly from the simulation data (using, respec-
tively, the “exact” partial charge density, ρ, and the multipole
contributions of Eq. (17)) are illustrated in Fig. 3. The total
vapor-liquid potential reaches −600 mV for SPC/E, in agree-
ment with previous values,5 but decreases in amplitude with
decreasing molecular quadrupole moment (SP9 to SP5). The
asymmetric purely dipolar liquids, on the other hand, have
positive interface potentials, whereas, as expected by sym-
metry considerations, the fully symmetric model S2D gives
a null result (Table I). The two components of the inter-
face potential reveal very different types of profiles with the
quadrupolar potential being negative, as expected for models
with positive molecular quadrupole moments. For the SPC/E
model the quadrupolar contribution represents more than 90%
of the total. This contribution decreases rapidly with decreas-
ing molecular quadrupolar moment and becomes comparable
in absolute value with the (positive) dipolar contribution for
SP5, the near cancellation in this case leading to a very low
(negative) total value. For SPC/E, SP9-SP7 the quadrupole
contribution provides the major contribution to the interface
potential (Figs. 3 and 4, Table I) and thus to the large in-
terfacial electric fields (∼1 V/nm for SPC/E) directed to-
wards the liquid phase over a substantial part of the interfa-

FIG. 4. Vapor-liquid interface potential drops for all studied models: stan-
dard (blue) and flipped (F)-charge (black) with respect to |Q0

xx | (molecular
quadrupole moment).

cial region.30 For SPC/E and SP9 the innermost dipoles tend
to follow this field, creating in turn an opposing dipolar field
that acts to align the outermost molecular dipoles in the op-
posite direction. Although the quadrupolar potential profile is
always monotonic, the dipolar one shows a minimum close
to the Gibbs dividing surface (GDS) for both SPC/E and SP9
models due to the dipolar orientational bilayers. These results
reveal a subtle interplay between the dominant quadrupolar
contribution and the dipolar response.

Even if the system is not isotropic in the interfacial re-
gion, it is possible to generalize the approach presented in
Refs. 2, 10, and 14 to construct a simple but extremely ac-
curate “isotropic” approximation for the quadrupolar contri-
bution to the local vapor-liquid interface potential using only
the water density profile and the molecular quadrupole mo-
ment Q0 evaluated in a local reference frame with the y-axis
along the dipole vector and the z-axis out of the molecular
plane:

δφ
Q
est(z) = −c(z)

6ε0

Tr Q0

3
, (19)

where c(z) is the local liquid number density taken from the
simulations. In this reference frame the only non-zero com-
ponent is Q0

xx and therefore in this case Tr Q0 = Q0
xx . The

estimate φ
Q
lv,est = δφ

Q
est(zl) for the quadrupolar contribution is

in excellent agreement with direct determinations (Table I).
We see from Eq. (19) that the variations in vapor-liquid in-
terface potentials for the models with non-zero quadrupole
moments are mainly determined by the quadrupolar con-
tribution and therefore dominated by the variations in the
molecular quadrupole moments (with the physically relevant
density variations playing only a secondary role). For this rea-
son and because the dipolar contribution is not strictly pro-
portional to the liquid density, we do not attempt to normal-
ize the vapor-liquid interface potentials in Table I to correct
for the variations in liquid density. We have also checked that
this simple quadrupolar estimation (19) provides a very good
approximation to the full oscillatory membrane-water sur-
face potential,21 confirming that the air-water interfacial and
membrane-water surface potentials are mainly determined by
the local water density and molecular quadrupole moment.
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Furthermore, we propose that this method can be used to es-
timate the quadrupolar potential contribution of any liquid,
irrespective of its bulk molecular quadrupole moment, even
those obtained from ab initio quantum mechanical calcula-
tions of liquid water. As an illustration, we have checked that
when ab initio values for Tr Q046, 47 are injected into the sim-
ple approximation Eq. (19), we find quadrupolar potentials in
reasonable agreement with the (quadrupole dominated) total
interface potentials (+3 eV) extracted directly from the quan-
tum mechanical calculations.13, 14

C. Solute-liquid interface potential

In the presence of a solute the planar vapor-liquid in-
terface potential has as a counterpart the microscopic poten-
tial between the solute center and the surrounding liquid (of
which the first two multipole terms can be obtained from the
microscopic analog of Eq. (18)30).

The local radial solute-liquid potential profile, defined as

δφr (r) = φr (r) − φr (rs) (20)

[with φr(rs) = 0 at the center of the solute rs = 0], is obtained
from the radial charge density ρr(r) by integrating the Poisson
Eq. (8) in spherical coordinates:

δφr (r) = −
∫ r

0
Er (r ′)dr ′ = −

∫ r

0

ρr (r ′)(r ′)2

ε0

(
1

r ′ − 1

r

)
dr ′.

(21)
The dipolar component, δφD

r (r), is determined from the
dipole moment density Pr(r) as

δφD
r (r) =

∫ r

0

Pr (r ′)
ε0

dr ′. (22)

The corresponding radial electric fields, Er(r) and ED
r (r), are

determined from Eqs. (10) and (15).
The quadrupolar contribution to the total radial interface

potential, δφQ
r (r) is accessible from the simulation data via

the radial dependence of the quadrupole moment density writ-
ten in spherical coordinates, Q′(r). We begin by writing the
quadrupolar Poisson Eq. (13) in Cartesian coordinates (cen-
tered at the solute position rs = 0), with the tensor elements
of the Cartesian quadrupole moment density, Qαβ :

ε0∇ · EQ =
∑
α,β

∇α∇βQαβ. (23)

Using the divergence theorem, we find

ε0

∫∫
©

S

EQ · dS =
∫∫
©

S

∑
α,β

∇αQαβ · nβdS, (24)

where n̂ is the normal to the interface. Letting Fβ

= ∑
α ∇αQαβ and S = 4πr2, we obtain the radial dependence

of the quadrupolar electric field EQ
r (r), by integrating over

the angular degrees of freedom:

4πε0E
Q
r (r) =

∫∫
©

S

Fr sin θdθdφ, (25)

with Fr = er · F (where er is the unit radial vector). After
performing the angular integrals, we obtain the radial depen-
dence of the quadrupolar electric field:

ε0E
Q
r (r) = ∂Q′

rr

∂r
+ 1

r

(
3Q′

rr − Tr Q
)
. (26)

Since EQ
r (r) = − ∂φ

Q
r (r)
∂r

and φQ
r (0) = 0, we arrive at the final

solution for the local quadrupolar potential at position r, with
respect to the center of the solute, δφQ

r = φQ
r (r) − φQ

r (rs), in
terms of two components:

δφQ
r (r) = δφQ,1

r (r) + δφQ,2
r (r) (27)

with

δφQ,1
r (r) = − 1

ε0
Q′

rr (r) , (28)

δφQ,2
r (r) = 1

ε0

∫ r

0

dr ′

r ′ [Tr Q(r ′) − 3Q′
rr (r ′)]. (29)

The second contribution is generated by the symmetry
breaking of the diagonal components of Q′ in the solute-
liquid interfacial region. The detailed calculations leading
from Q (r) to δφQ

r (r) will be presented in Ref. 30. Far from
the solute center the radial solute-liquid interface potential
and the various multipole components tend to their respec-
tive asymptotic values: φls = δφr(∞), φD

ls = δφD
r (∞), and

φ
Q
ls = δφQ

r (∞).

TABLE III. Solute-liquid interface potentials with multipolar contributions for neutral solutes solvated in SPC/E water (for which the vapor-liquid interface
potential is φlv = −600.3 mV with φ

Q
lv = −559.2 mV and φD

lv = −41.5 mV). In principle φ
Q,1
ls = φ

Q
lv . The less than 2% difference between the values obtained

from the water slab and bulk simulations can be attributed to the differences in densities generated by the finite slab thickness and the barostat used in the NPT
bulk simulations (cf. Eq. (19)). To directly compare solute-liquid and vapor-liquid interface potentials, we correct for this small systematic liquid density
difference by defining a solute-dependent rescaled vapor-liquid interface potential, φ∗

lv = Cφlv , where C ≡ φ
Q,1
ls /φ

Q
lv (rescaled multipole vapor-liquid interface

components are defined similarly). The estimated standard error for the interface potentials is ±0.15 mV and pol denotes polarizable.

Solute φls/φ
∗
lv (%) φls(mV) φD

ls (mV) φ
Q
ls (mV) φ

Q,1
ls (mV) φ

Q,2
ls (mV) ) φls − φD

ls − φ
Q
ls (mV)

Na0 66.7 −405.7 − 78.8 −423.6 −566.7 143.1 96.7
F0 62.4 −380.0 − 41.6 −415.3 −567.3 152.0 76.9
Cl0 60.3 −369.0 0.3 −426.8 −569.9 143.1 57.5
Br0 58.8 −359.8 17.8 −430.8 −569.6 138.8 53.2
I0 58.4 −357.5 32.3 −437.6 −570.5 132.9 47.8
I0 (pol) 62.1 −380.1 14.4 −440.0 −570.5 130.5 45.5
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TABLE IV. Comparison of the different multipole contributions to the di-
rect electrostatic solvation-free energies, �G∗

0 = q(φ∗
lv − φls ), obtained us-

ing the rescaled vapor-liquid interface potentials (*), of various ions as ob-
tained directly from the simulations (see Table II) (�G′

0 � ±0.6003 eV);
estimated errors: 0.002 eV.

Solute �G∗
0 (eV) Dipole* (%) Quadrupole* (%) Higher order* (%)

Na+ − 0.2030 − 18.1 70.5 47.6
F− 0.2294 0.2 66.3 33.5
Cl− 0.2432 17.5 58.8 23.6
Br− 0.2521 23.8 55.1 21.1
I− 0.2554 29.2 52.0 18.8
I− (pol) 0.2327 24.4 56.0 19.6

Because the solute-liquid interface is curved, the associ-
ated potential depends on the size of the cavity and is there-
fore ion specific. Thus, there is a first potential drop when
going from the vapor into the liquid phase, followed by an
overall increase near the solute, yielding a smaller, over-
all negative, vapor-liquid-solute potential drop, φsv (Fig. 1).
To obtain a fuller picture, we have extracted the solute-liquid
interfacial potentials (and the dipolar/quadrupolar compo-
nents) from MD simulations of neutral ion-like solutes, fixed
at the center of a cubic box of bulk SPC/E water (using
Eqs. (21), (22), and (27)). The solute-liquid potential φls

and the corresponding dipolar contribution φD
ls are obtained,

respectively, from the radial charge density and the dipole
moment density distributions. The higher order multipole
contributions, φls − φD

ls , are dominant and, due to ls interface
curvature effects, not only is the amplitude of the ls quadrupo-
lar contribution different from the lv one, but multipole
terms beyond the quadrupolar one play a non-negligible role
(Tables III and IV).30 For the halide-like neutral solutes φls de-
creases in amplitude with increasing solute size and is smaller
than for the neutral sodium like solute, Na0. For I0, φls in-
creases in amplitude by about 6% when the polarizability is
turned on. Although the φ

Q,1
ls contribution is dominant in φls,

it simply serves, as we shall see below, to cancel the large
vapor-liquid quadrupolar part of the direct contribution to the
free energy of ion solvation, �G0. The dipole contribution φD

ls

goes from negative values for small halide-like solutes (F0) to
positive values for larger ones.

D. Free energy of ion solvation

The solute-liquid potential was then used to evaluate
the direct contribution to the free energy of ion solvation,
�G0 = q(φlv − φls) (Eq. (3)), dominated by the difference
between the quadrupolar lv and ls contributions, which do not
cancel due to strong curvature effects for the small ions under
study. Because the φ

Q,1
ls component depends only on the bulk

solvent properties, it is in principle equal to φ
Q
lv and therefore

the two terms should cancel in �G0, leaving the dominant ion
specific quadrupolar contribution, φ

Q,2
ls (Tables III and IV).

The dipolar contribution and multipolar contributions higher
than quadrupolar play non-negligible, but secondary roles, in
�G0. Our results for polarizable I− also reveal that ionic po-
larizability plays a minor but non-negligible role in determin-
ing �G0 (Tables III and IV). The key point is that �G0 is
much smaller in amplitude than the simple direct estimate
(|�G′

0| = 0.600 eV) because of the strong partial cancella-
tion of the two interface potentials, φlv and φls. Our results
show that the direct contribution, �G0, is reduced to 30%–
40% of the simple direct estimate �G′

0 and depends on the
sign of the ion charge in such a way as to favor the solvation
of cations Na+ with respect to the anions (halogens). For the
halogens �G0 is positive and increases with increasing ion
size, thus augmenting the interface propensity of large anions
like I−. Because the amplitude of �G0 (∼0.20 − 0.26 eV)
is still between 5% (for F−) and 10% (for I−) of the domi-
nant polarization contribution, �Gpol (see Table V), it is on
par with other important contributions (such as the hydropho-
bic one22–24, 26, 48) and therefore must be taken into account
correctly when considering ion-specific effects.

Because of charge-dipole and charge-quadrupole cou-
pling, when the ion charge is “turned on” the solvent
molecules reorient themselves in order to accommodate the
solute, optimizing as much as possible the orientation and
number of hydrogen bonds: the ion polarizes the medium
around it and induces a radial potential difference, φion

ls , domi-
nated by the “long range” dipolar contribution. The difference
between φion

ls and φls extracted from the simulations then de-
termines �Gpol (Eq. (4)). With our choice of effective ion ra-
dius, the simple mesoscopic Born approximation �GB

pol is in
reasonably good agreement with the microscopic polarization
contribution, �Gpol (Table V). The polarization contribution

TABLE V. Comparison of electrostatic solvation-free energies for various ions as obtained directly from the simulations, �Gion
ES = �G0 + �Gpol, with the

estimate �Gion
ES,est = �G′

0 + �GB
pol obtained from the truncated direct contribution [�G′

0 � ±0.6 eV for monovalent anions (respectively, cations)] and the

Born approximation, �GB
pol . Ri is chosen as the distance from the ion center where the ion-water radial distribution functions first reach 1.30 To correct for

the small systematic differences in liquid density between water slab and bulk simulations, the rescaled vapor-liquid interface potentials, φ∗
lv , are used in the

evaluation of the direct contribution: �G∗
0 = q(φ∗

lv − φls ) (see Table III). Estimated error of 0.025 Å for Ri; estimated standard errors: 0.002 eV for �G0;
0.05 eV for the other solvation-free energies (1 eV = 23.06 kcal/mol � 40kBT).

Solute Ri (Å) �G∗
0 (eV) �GB

pol (eV) �Gpol (eV) �Gion
ES,est (eV) �Gion

ES (eV) �Gion
exp (eV)46

Na− 1.05 0.2030 −6.76 −6.88 −6.57 −6.68 . . .
F− 1.55 0.2294 −4.58 −4.46 −4.36 −4.23 −4.50
Cl− 2.00 0.2432 −3.55 −3.34 −3.32 −3.10 −3.64
Br− 2.25 0.2521 −3.15 −3.01 −2.91 −2.76 −3.30
I− 2.45 0.2554 −2.90 −2.63 −2.66 −2.38 −2.90
Na+ 2.20 − 0.2030 −3.23 −3.88 −3.42 −4.08 −4.26
I+ 3.55 − 0.2554 −2.00 −1.79 −2.24 −2.04 . . .
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to the solvation free energy, which is the main effect favor-
ing high ion solvation, decreases in amplitude with increasing
halogen size. We note also that the simulation results for the
electrostatic contribution to the ionic free energy of solvation,
�Gion

ES , follow the experimental trend, �Gion
exp, reasonably well

(Table V), despite the neglect of certain entropic (hydropho-
bic) and enthalpic contributions (arising, for example, from
the short range repulsion and the long range van der Waals—
dispersion—attraction).

VI. CONCLUSION

We have studied a series of liquid models that interpolate
between SPC/E water and pure dipolar liquids and shown that
the quadrupolar component of the vapor-liquid interfacial po-
tential typically dominates for the studied liquids possessing
a non-zero quadrupolar moment. In an effort to elucidate the
different ion-specific contributions to the free energy of solva-
tion, we have shed light on the key role played by the solute-
liquid interface potential and demonstrated that it leads to a
strong reduction in the direct electrostatic contribution with
respect to previous estimates based solely on the vapor-liquid
potential.

We propose that the same mechanism would be at play
if the point partial charge distribution of the solvent extracted
from classical MD simulations were replaced by the more re-
alistic extended charge distributions found in ab initio calcu-
lations. Indeed, a coarse graining procedure for the electric
potential proposed recently,14 which corrects for regions in-
accessible to ionic probes, shows that, encouragingly, both
ab initio and point charge coarse grained potentials converge
to values that are compatible with the results for �G0 = qφsv

presented in Table V. Finally the dominant electrostatic polar-
ization contribution to the free energy of solvation was found
to agree reasonably well with a Born-type approximation. We
conclude that the direct interface potential contribution to the
ionic free energy of solvation (or PMF) can neither be esti-
mated using the point ion approximation (leading to a gross
overestimate), nor be neglected entirely – the two approxima-
tions commonly adopted in the current literature. An impor-
tant corollary that can be drawn from our study is that, in con-
tradistinction to what is sometimes suggested,10 even purely
quadrupolar liquids should give rise to an interface potential
contribution to the ionic solvation free energy because of the
incomplete cancellation of the lv and ls components (due to
solute curvature effects). The mechanism investigated here
leading to a strongly reduced vapor-liquid interfacial potential
contribution to the electrostatic part of the ionic PMF is quite
general and should be applicable not only to membrane-liquid
surfaces, but also other types of solvents and solutes. More
complicated, possibly non-spherically symmetric, ions—like
large organic ones—can be built for MD simulations from
several charged LJ particles and therefore an ionic cavity de-
void of solvent will form and give rise to a solute-liquid inter-
face potential.

It would also be interesting, albeit difficult, to gener-
alize the approximate theoretical statistical mechanical ap-
proaches developed previously for dipolar liquid models near
interfaces31, 32 to quadrupolar liquids in order to capture the

effects studied here via MD simulations. An important out-
come of a reliable mesoscopic theoretical approach to the
problem investigated here would be a greatly enhanced com-
prehension of the underlying physics of ion distributions in in-
homogeneous dielectric settings with important applications
in colloidal science, nanotechnology (ion transport in artificial
nano-pores or nano-filtration), and biophysics (ion channels,
biological membranes, DNA).16–19 We also expect that the
results presented here transcend the particular chosen mod-
els and thus qualitatively illustrate important physicochemical
mechanisms at play in ion partitioning within inhomogeneous
dielectric media.

After this work was completed we became aware of other
interesting very recent work covering similar topics and in
which some of the same conclusions were reached.50–53 In
Ref. 50 the same problem was studied and the same interface
potential reduction mechanism proposed from a different per-
spective: instead of investigating the various multipole contri-
butions, as we do, a novel method of partitioning the ionic sol-
vation free energy was used to extract from MD simulations of
SPC/E water different physically identifiable (cavity forma-
tion, attractive van der Waals, local and far-field electrostatic)
contributions (using recently optimized MD parameters26, 54).
Interestingly, for I−, the loss of the first water hydration layer
(local electrostatic contribution), favoring ion solvation, is
nearly counterbalanced by the hydrophobic (cavity formation)
contribution favoring desolvation. A remaining net interface
potential contribution, favoring anion desolvation, due to the
competing vapor-liquid and solute-liquid interfaces, was ob-
tained that is consistent with the results obtained here. The
authors of Ref. 50 also proposed, as we did above, that this
same interface potential reduction mechanism could be used
to resolve the apparent huge discrepancy between the classi-
cal and quantum predictions for the interface potential con-
tribution to the ionic solvation free energy. This scenario was
shown to be viable in Ref. 53, where both a detailed criti-
cal comparison with other quantum simulations and a favor-
able experimental assessment were carried out. The results
obtained in Ref. 53 are consistent with those of Ref. 14 show-
ing that a coarse graining procedure that effectively omits cer-
tain regions of space in computing average interface poten-
tials leads to a closer agreement between the classical and
quantum results. Despite these recent advances concerning
the interface potential contribution to the ionic solvation free
energy, a definitive comparison with experiment is for the mo-
ment complicated by what appears to be some model and/or
sampling dependency. In Ref. 51 the free energy of a single
ion close to hydrophobic and hydrophilic surfaces was inves-
tigated using a novel theoretical framework to obtain the posi-
tion dependent dielectric response for interfacial water using
molecular dynamics simulations. A multipole analysis for the
planar surface was then carried out, underlining the impor-
tance of the quadrupolar contribution to this surface potential
(consistent with the results presented here). The role of the
solute-liquid interface contribution was not, however, evoked
in Ref. 51. In Ref. 52 the driving forces for anion adsorp-
tion to the water vapor-liquid interface were studied by com-
paring the results of MD simulations with those of a simpli-
fied mesoscopic theoretical approach. Two different solvent
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models were used, SPC/E water and a symmetric purely dipo-
lar liquid (the Stockmayer model, similar to our S2D model,
presented above). On the one hand, an extra electrochemical
surface potential contribution was needed in the mesoscopic
theoretical approach to explain the results of the SPC/E sim-
ulations and the magnitude and sign of this contribution are
consistent with the reduced electrostatic interfacial one ob-
tained here. On the other hand, no such extra electrochem-
ical contribution was needed in the case of the Stockmayer
model, which is consistent with our result that there should be
no interfacial electrostatic contribution for symmetric purely
dipolar liquids.

The simulation results presented here should be not only
a useful building block in the quest for constructing the phys-
ically relevant mesoscopic components of the ion free ener-
gies of solvation (or PMF), but also provide a challenge for
statistical mechanical approaches used to analyze the subtle
interplay between short range steric, dipolar, and quadrupo-
lar interactions in determining the properties of polar fluids
(in particular the dipole distribution near interfaces) and their
influence on ions.

We are currently extending the approach developed here
for the ionic solvation free-energy to the study of the lo-
cal ionic PMF near aqueous interfaces and surfaces with
and without the potentially important effect of water and ion
polarizability.21, 23, 24, 35, 48, 49 We note that unlike certain non-
polarizable ion-water models,26, 54 polarizable ones have not
yet been properly optimized and therefore the relative weight
of polarizability in driving large anions to interfaces and sur-
faces (compared with the interfacial electrostatic contribution
investigated here) remains to be determined.
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