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Polyethyleneimine (PEI), one of the most widely used nonviral
gene carriers, was investigated in the presented work at coarse-
grained (CG) level. The main focus was on elaborating a realistic
CG force field (FF) aimed to reproduce dynamic structural features
of protonated PEI chains and, furthermore, to enable massive sim-
ulations of DNA–PEI complex formation and condensation. We
parametrized CG Martini FF models for PEI in polarizable and non-
polarizable water by applying Boltzmann inversion techniques to
all-atom (AA) probability distributions for distances, angles, and

dihedrals of entire monomers. The fine-tuning of the FFs was
achieved by fitting simulated CG gyration radii and end-to-end
distances to their AA counterparts. The developed Martini FF
models are shown to be well suited for realistic large-scale simula-
tions of size/protonation-dependent behavior of solvated PEI
chains, either individually or as part of DNA–PEI systems. © 2019
Wiley Periodicals, Inc.

DOI: 10.1002/jcc.26110

Introduction

Its remarkable properties and straightforward fabrication have
currently turned polyethyleneimine (PEI), [CH2 NH CH2]n ,
into one of the most commonly used nonviral gene delivery
vectors. The particular interest in polyplexes formed by PEI and
DNA stems from their low toxicity and the appreciable transfec-
tion efficiency that can be achieved by optimizing the proton-
ation pattern of PEI. It is commonly accepted that the formation
and condensation of these polyplexes, apt to enter cells via
endocytosis, are conditioned to a large extent by the electro-
static interactions occurring between the positive amino groups
of protonated PEI monomers, �CH2�NH+

2 �CH2�, and
the negative phosphate groups of DNA.

There is presently a vivid experimental and theoretical inter-
est in optimizing the formation and condensation of DNA–PEI
polyplexes.[1–3] Experimental studies have conclusively proven
both the high efficiency of PEI as genetic vector and the low
cytotoxicity of the formed DNA–PEI complexes. For example,
DNA condensation enabled by PEI chains as part of a mixture
of cationic agents and trivalent ions was reported by Jorge
et al.[4] to show increased efficiency in the presence of Fe ions.
In the context of cancer immunotherapy, Cai et al.[5] have very
recently built nanocomposites formed of PEI and inorganic
materials as gene delivery systems and proved their transfec-
tion efficiency via fluorescence microscopy.

Analyzing the formation of small DNA–PEI complexes at all-
atom (AA) level by molecular dynamics (MD) requires moderate
computational resources. Nevertheless, when it comes to in-
depth investigations of the mechanisms governing DNA–PEI
polyplex condensation, the number of atoms rapidly exceeds
tens of millions, and systematic AA MD simulations become cum-
bersome even for high-performance computer systems. In such
cases, resorting to coarse-grained (CG) models (by mapping
entire atom groups into single “beads”), if realistically parame-
trized, appears to be the method of choice, typically reducing
the number of simulated particles by an order of magnitude and

enabling significantly increased simulation times as a result of
the reduced computational costs (due to less simulated particles,
consideration of only short-range interactions, and stability for
substantially larger time steps).

Ziebarth and Wang[6] already studied a decade ago the con-
densation of DNA with PEI–polyethylene glycol (PEG) diblock
copolymers via CG MD simulations. Using a simple bead-spring
model for the polymers, they presented conclusions on the
degree of condensation and structure of the formed complexes
in dependence on the cationic block length and linear versus
star-shaped structure of the copolymers.

More recently, Wei and Luijten[7] developed an AA CHARMM
(Chemistry at Harvard Macromolecular Mechanics) force field
(FF) for PEG-grafted linear PEI by applying a “divide-and-con-
quer” strategy to small building blocks and optimizing the dihe-
dral parameters relative to ab initio potential energy scans. The
resulted AA FF was used in simulations of complexation of
small interfering RNA (siRNA) with PEG-grafted PEI. AA distribu-
tions of bonds, angles, and dihedrals from simulations of iso-
lated PEG-grafted PEI in water served as input for the
parametrization of a CG model, by repeatedly adjusting the CG
parameters so as to achieve a good match between the CG and
AA distributions. The standard Martini types assigned by Wei
and Luijten to the beads for fixing the nonbonded interactions
and are found to match one of the optimal combinations found
in the present work.

Carrillo et al.[8] performed MD CG simulations of branched
PEIs as part of silica mesoporous supports. Similarly to Ziebarth
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and Wang, they used the bead-spring model for the
aminopolymers.

Very recently, Mahajan and Tang[9] published a CG Martini FF
for PEI in linear and branched configurations, which relies on
(asymmetric) beads corresponding to C C N groups. The
parametrization of this CG FF was carried out by Boltzmann
inversion, using reference distributions resulted from simula-
tions performed using the AA FF reported by Sun et al.[10] This
AA FF essentially adopts residues by analogy from the
CHARMM27 FF,[11] lacking a specific parametrization for bonds
and angles, while optimizing only the torsional parameters by
fits to ab initio data. For comparison reasons, we specifically
consider in our investigations the choice of Mahajan and Tang
for the standard Martini types attributed to the PEI beads.

An increasingly accepted general strategy for developing CG
models, which we actually adopted in our line of studies
regarding PEI over the last couple of years, involves operating
at three distinct levels (length scales):

1. Ab initio: Provides accurate quantum mechanical reference
data from calculations on sets of PEI models featuring the
typical vicinity for each relevant atomic species. Generic sys-
tem sizes are of the order of 25 Å and around 50 atoms.

2. Atomistic (AA): Involves developing AA FFs (e.g., CHARMM[11–13])
based on the QM reference data produced within step 1. Fine-
tuning and validation of the FFs are achieved by matching MD
simulation results to experimental data. Typical system sizes for
solvated PEI chains are of the order of 100 Å and 100,000 atoms.

3. Coarse-grained (CG): Involves parametrizing CG FFs
(e.g., Martini[14–17]) using AA probability distributions for bead
interdistances, angles, and dihedrals. Fine-tuning and valida-
tion of the CG FF are done by matching CG structural features
with AA simulations and experimental data. System sizes in
DNA–PEI condensation simulations typically exceed 250 Å and
500,000 beads (the equivalent of about 2,000,000 atoms).

Covering the first two steps, while aiming to develop a
more realistic AA FF for PEI than its predecessors, we have
recently published two variants of a CHARMM FF,[1,2] one
based on asymmetric residues (with C C N backbones),
and a thoroughly revised version based on symmetric residues
(with C N C backbones), the latter being in many respects
more appropriate with a view to developing a CG FF. A notable
difference with respect to previous AA models for PEI was
that we consistently adjusted not only the torsional parameters,
but the entire set of bonded parameters, along with the partial
atomic charges. The quality of the parametrization was underpinned
by an extensive body of accurate reference ab initio data extracted
fromPEImodel pentamers.

The present study takes a step forward, completing the third task
of the general strategy for developing CG FFs for PEI. Specifically, we
focused on developing Martini FF models, defining beads located at
the mass centers of symmetric PEI monomers, CH2 NH CH2

and/or�CH2�NH+
2 �CH2�. We generated reference dis-

tributions for interbead distances, angles, and dihedrals, as well
as reference values for gyration radii, end-to-end distances, and
diffusion coefficients from large ensembles of AA trajectories

run for three PEI sizes and four protonation fractions using our
latest CHARMM model.[2] The bonded parameters were deter-
mined from the AA distributions by Boltzmann inversion,[18]

comparatively via single-function and multifunction fits. For
defining the nonbonded parameters, comprehensive CG MD
simulations were performed for a wide range of standard
Martini-type combinations assigned to the PEI beads, both with
polarizable and nonpolarizable water. The root mean square
deviations (RMSD) of the gyration radii and end-to-end dis-
tances between the entire CG and AA ensembles were used to
choose the most appropriate standard Martini types. The opti-
mal combinations of bonded and nonbonded (standard Mar-
tini) parameters were finally decided considering the best
match between the CG and AA distributions for bead inter-
distances, angles, and dihedrals.

To further demonstrate the usefulness of the developed CG
FF for PEI, we used it in conjunction with the Martini FF for
DNA[17] in modeling the formation of DNA-PEI complexes. We
present complex formation results for a short DNA molecule
(double dodecamer), leaving the bulk of the results for the con-
densation of significantly longer DNA strands for a follow-up
paper, as well as the study of branched PEI polymers.

Methodology

Martini FF model

Martini[14–17] is a versatile and increasingly popular additive CG
model, successfully used in the last decade in MD simulations
of large biomolecular systems. The Martini FF model operates
with beads as units, often defined as entire functional groups,
employing as a general rule a four-to-one mapping, which
means that four heavy atoms (plus the associated hydrogens)
are replaced by a single CG bead. The Martini FF model com-
prises bonded and nonbonded interactions:
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1
2
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2
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The bonded terms model distances, angles, and dihedral
angles between beads, whereby Kb, Kθ, and Kψ are the
corresponding force constants, while b0 and θ0 are, respectively,
equilibrium distances and angles. To model multiwell poten-
tials, the dihedral terms feature multiplicities n and reference
phases ψ0. It should be noted that the original definition of the
Martini angle-dependent terms is actually cos-harmonic, involv-
ing differences of cosines of angles, being used, for example,
by Mahajan and Tang. However, for reasons of improving the
agreement between AA and CG angular distributions, we
adopted harmonic contributions in terms of angles as such.

The nonbonded terms account for electrostatic and van der
Waals interactions, whereby qi are bead charges, ϵij are
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Lennard-Jones (LJ) potential-well depths, and σij are the
corresponding zero-potential interbead distances.

The Martini model classifies the strength of the LJ non-
bonded interactions by defining four basic bead types (Q—
charged, P—polar, N—nonpolar, and C—apolar). The Q and
Ntypes have four subtypes (d—donor, a—acceptor, da—both,
and 0—none) reflecting the bead’s hydrogen-bonding capabili-
ties, while the P and C types are subcategorized according to
the degree of polarity (1–5). Additional “small” variants of the
basic bead types, carrying a leading “S,” are introduced with
reduced LJ parameters to allow for closer packing (e.g., in ring
structures).[15] Yet smaller “tiny” bead variants, carrying a lead-
ing “T,” are defined to quantify the van der Waals interactions
of the nucleobases in DNA.[17] The actual strength for each
combination of standard bead types is specified by interaction
tables and spans 10 levels, with well-defined LJ parameters.

The standard nonpolarizable Martini water is composed of
neutral P4 beads, which represent groups of four water mole-
cules. In order to break any spurious ordering and thus prevent
artificial freezing, the P4 beads are replaced in a 1–10 ratio by
(“big”) antifreeze particles BP4.

The polarizable Martini water model of Yesylevskyy et al.,[19]

useful for realistically modeling systems with pronounced
charge separation, maps, just like the nonpolarizable model,
four water molecules and comprises three beads: a neutral cen-
tral bead and two beads of opposite fractional charge kept at
fixed distance from the central one. The three beads share
equally the mass of the four modeled water molecules and
interact through a harmonic angular potential, creating a dipole
moment responding to the local electric field. Recently,
Michalowsky et al. published a reparametrized MARTINI model
for polarizable water, with generally increased LJ interaction
levels and optimized partial charges.[20]

As per common practice, the Na+ and Cl− neutralizing ions
are modeled as Qd and Qa (charged donor and acceptor)
beads, respectively.

As explained in the “Results” section, we extracted the
bonded parameters for the Martini model of PEI via Boltzmann
inversion techniques[18] from probability distributions of bead
interdistances, angles, and dihedral angles, collected from large
ensembles of AA trajectories for PEI chains of different lengths
and (uniform) protonation fractions. As for defining realistic LJ
interactions for the PEI beads, we scanned for the minimum of
the RMSD between the CG and AA radii of gyration and end-to-
end distances over a large set of standard Martini-type combi-
nations, using both polarizable and nonpolarizable water.

MD simulations

All the AA MD simulations for solvated PEI chains referred to in
this work are those published in our recent paper.[2] They are
based on our new CHARMM FF for PEI and were carried out
using the NAMD (Nanoscale Molecular Dynamics) code.[21] Essen-
tially, we studied the structural and dynamical behavior of PEI
chains composed of 12n + 3 monomers, that is, the 27-mer,
39-mer, and 51-mer, respectively, denoted as PEI27, PEI39, and
PEI51. The PEI chain sizes were chosen so as to allow for uniform

protonation in fractions 1/4 (one in four), 1/3 (one in three), and
1/2 (alternative protonation). The 12 PEI polymers combining the
three chain sizes with the four protonation fractions (including
no protonation) represent the reference simulation set (RSS)
employed throughout in the present investigations to relate the
AA and CG results. For each PEI polymer of the RSS, the per-
formed NPT simulations (constant number of particles N, pres-
sure P, and temperature T) spanned a total of 400 ns of data
collection.

The bulk of the CG MD simulations reported here were carried
out using Gromacs version 2018.1.[22–24] For each polymer of the
RSS, we generated NPT trajectories of 500 ns (preceded by 50 ps
of equilibration) employing leap-frog propagation with a time
step of 10 fs, and applied periodic boundary conditions in all
directions using a 12 Å cutoff for the short-range interactions.

For treating electrostatics, we employed the reaction field
method with a relative dielectric constant εr = 2.5 in conjunc-
tion with polarizable water, an increased value εr = 15, with
standard water, and infinite screening beyond the cutoff dis-
tance. We also tested particle mesh Ewald electrostatics with a
1 Å grid spacing, however, without notable improvements to
justify the increased computational effort.

The temperature was kept fixed at 310 K using stochastic
velocity rescaling with a (weak) coupling constant of 1 ps, while
the pressure was maintained at 1 bar via a Parrinello–Rahman
barostat with a coupling constant of 12 ps.

The CG simulation box size for each polymer of the RSS was
the same as in the corresponding AA simulations, being chosen
so as to spaciously accommodate the polymer coiled as a helix
with the radius and axial extent of the order of the respective
gyration radius. Specifically, the simulation boxes sizes were
equal to 60, 75, and 90 Å for PEI27, PEI39, and PEI51, respec-
tively, and the numbers of solvating water beads were about
1660, 3280, and 5700.

For selected FF models, we also performed comparative CG MD
simulations with NAMD, which yielded for all polymers of the RSS
similar results to those obtained with Gromacs, as expected.

Results and Discussion

Parametrization of the Martini model for PEI

For modeling our Martini FFs for PEI, we applied residue-based
CG and defined three bead types (see Fig. 1), which exactly
map the residues defined as part of our recent AA CHARMM FF
model,[2] being identified with the respective mass-centers and
bearing the same names:

• PEI—generic nonprotonated PEI monomer CH2 NH CH2 .
• PEP—protonated PEI monomer�CH2�NH+

2 �CH2�.
• PEC—CH3 group starting/ending PEI chains.

Indeed, from the perspective of the generic “four-to-one”
mapping introduced by the Martini model, these beads appear
to be rather small (the first two map just three heavy atoms,
while the last, only one). It is, therefore, to be expected that, to
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properly set the scale of their nonbonded interactions, these
beads need to be identified with “small” standard Martini types.

We note that our symmetric bead mapping scheme with
C N C backbones is consistent with the one used by Wei

and Luijten.[7] By contrast, Mahajan and Tang[9] based their
mapping on the non-symmetric atomistic residues of Sun
et al.[10] with C C N backbone.

Bonded parameters via Boltzmann inversion of atomistic
distributions

It is obvious that in deconvoluting CG FF parameters from
atomistic data, the bonded and nonbonded parameters cannot
be uncoupled completely, and certain iterative refinement pro-
cedures may need to be applied. Anyhow, AA reference distri-
butions for bead interdistances and angles are generally
dominated by intramolecular bonding forces, depending less
on van der Waals interactions. This creates the possibility for
the CG bonded parameters, or at least very good initial approxi-
mations of theirs, to be by directly obtained by Boltzmann
inversion[18] of the AA profiles.

Another technical difficulty is that the AA distributions show
by no means a single peak, as might be desirable for the
straightforward application of the Boltzmann inversion, but
generally have a multipeak structure reflecting the multiple
“most-probable” conformers that occur in sampling the phase-
space. Illustrative examples are the PEI–PEP distance (Fig. 2)
and the PEI–PEP–PEI angle (Fig. 3), where the AA distributions
(with triangles) clearly result from three independent Gaussian
peaks (depicted with dotted lines), while none of these can be
regarded as spurious. Since, by default, the established MD sim-
ulators (including Gromacs and NAMD) accept a unique force

constant/equilibrium value combination for each type of
valence bond or angle bending coordinate, one needs to devise
a more elaborate treatment than the simple single-Gaussian
model.

One-Gaussian (1G) fit functions for the probability distribu-
tions of interbead distances b and angles θ,

P = Ae−U=kBT , ð3Þ

with harmonic potential energy dependencies,

Ub =
1
2
Kb b−b0ð Þ2, Uθ =

1
2
Kθ θ−θ0ð Þ2, ð4Þ

where kB is Boltzmann’s constant and T is the equilibrium tem-
perature, have a manifest tendency to produce too broad

Figure 1. CG beads defined in our Martini FF model: PEI—unprotonated
monomer CH2 NH CH2 (white), PEP—protonated monomer
�CH2�NH+

2 �CH2� (red), and PEC—terminal methyl group (blue).
[Color figure can be viewed at wileyonlinelibrary.com]

Figure 2. Atomistic probability distribution for the PEI–PEP bead distance
(with triangles), 1-Gaussian fit (green line), 3-Gaussian fit (black line),
3-Gaussian average (red line) of inverse force constants [eq. (7)], and
3-Gaussian average (cyan line) of force constants. [Color figure can be
viewed at wileyonlinelibrary.com]

Figure 3. Atomistic probability distribution for the PEI–PEP–PEI angle (with
triangles), 1-Gaussian fit (green line), 3-Gaussian fit (black line), and
3-Gaussian average (red line) of inverse force constants [eq. (8)]. [Color
figure can be viewed at wileyonlinelibrary.com]
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model profiles (with green continuous lines in Figs. 2 and 3)
and much lower force constants than those corresponding to
the individual peaks. From this perspective, three-Gaussian
(3G) fit functions,

P =
X3
i =1

Aie
−Ui=kBT ð5Þ

with separate harmonic potential energy contributions,

Ui,b =
1
2
Kb,i b−b0,ið Þ2, Ui,θ =

1
2
Kθ,i θ−θ0,ið Þ2 ð6Þ

appear to be more appropriate.
Specifically for the PEI–PEP distance (with two very well-

separated peaks), the three force constants resulted from a 3G-fit
are (from left to right) 5494, 30,104, and 81,734 kJ mol–1 nm–2,
whereas the 1G-fit yields a smaller force constant (4999 kJ mol–1 nm–2)
than any of the previous ones. A particularly problematic situa-
tion is that of the PEC–PEI bond (see Supporting Information
Fig. S1), where the two pronounced peaks in the AA distribu-
tion hardly show overlap so as to be identifiable with a single
Gaussian function.

In adopting a multipeak approach, still the problem remains
of how to combine the force constants and equilibrium dis-
tances/angles of the individual peaks into single values, as
required by the analytical functional forms implemented in
many commonly used MD codes. In order to maintain the ana-
lytic consistency of our Martini model, ultimately justified by
the very good agreement between our simulated AA and CG
structural data (such as gyration radii), but also ensuring wide
compatibility with MD codes in use, we chose not to resort to
tabulated potential energy functions, which, indeed, benefit
from more flexibility, but lack enough portability across simula-
tion communities. After testing several schemes, but minding
that the squared peak half-widths relate inversely with the force
constants, we settled on defining equivalent inverse force con-
stants as weighted averages of the inverse individual force

constants (similar to springs connected in series), with the equi-
librium distances and angles defined as simple weighted
averages,

1
Kb

=
X3
i =1

wi

Kb,i
, b=

X3
i =1

wib0,i , ð7Þ

1
Kθ

=
X3
i =1

wi

Kθ,i
, θ =

X3
i =1

wiθ0,i , ð8Þ

and weights proportional to the peak areas Si,

wi =
SiP
iSi

, ð9Þ

to better reflect the relative probabilities of the conformers. This
3G scheme generally results in larger force constants (narrower
model peaks) than the 1G-fits. For the PEI–PEP distance, in particu-
lar, the 3G-fit leads to a force constant more than 2.4 times larger
(12,117 kJ mol–1 nm–2) and to more pronounced (red) model pro-
files in Figures 2 and 3. While the 3G-fits generally seem to closer
reflect the overall AA probability distributions for bead inter-
distances, the 1G-fits appear to work better for angles. It is, how-
ever, worth mentioning the case of the PEI–PEI–PEI angular
distribution (Fig. S2), in which the 1G and 3G models result in very
close profiles, with the corresponding force constants differing by
less than 6%, and the equilibrium angles by roughly 1%.

A possibly more intuitive approach to produce single-valued force
constants and positions would be to consider the straightforward
weighted average of the individual force constants resulting from
the 3G-fit (similar to springs in parallel), instead of their inverses.
In the case of the PEI–PEP distance, this yields a significantly larger
equivalent force constant (33,880 kJ mol–1 nm–2) and the corres-
ponding normalized profile (with cyan line in Fig. 2) appears too
peaked, not realistically reflecting the overall AA distribution. For this
reason we did not pursue this variant and considered further on,
alongside the 1G-fit, only the 3G-inverse averaging scheme based
on eqs.(7)–(9), in the following simply referred to as 3G-averaging.

The CG bonding parameters resulted by 1G-fit and 3G-
averaging from the AA probability distributions compiled for the
entire RSS are listed in Table 1, and one may notice (with the
sole exception of the PEI–PEI–PEI angle, for which the two
approaches yield comparable results) the significantly lower force
constants produced by the 1G-fit, both for distances and angles.

Given the qualitatively different shape of the distributions for
the dihedral angles ψ defined by four adjacent beads, shown for
illustration in Figure 4 for the PEI–PEI–PEI–PEP dihedral, as well as
the fact that the established MD codes accept multiple functions
for torsional coordinates, we used in this case a four-function fit:

Pψ =Ae−Uψ =kBT , ð10Þ

where

Uψ =
X4
i =1

Kψ ,i 1+ cos niψ −ψ0,i

� �� �
, ð11Þ

Table 1. CG bonded parameters for bead distances (bonds) and angles
resulted from AA distributions by Boltzmann inversion using: (a)
1-Gaussian (1G) fits and (b) 3-Gaussian (3G) fits and parameter
averaging according to eqs. (7)–(9).

1G-fit 3G-average

Bond b0 Kb b0 Kb
PEI–PEI 0.3328 5910 0.3274 18,246
PEI–PEP 0.3479 4999 0.3451 12,117
PEI–PEC 0.2412 4446 0.2428 88,315

Angle θ0 Kθ θ0 Kθ
PEC–PEI–PEI 139.29 48.998 139.95 70.003
PEC–PEI–PEP 135.96 29.638 135.05 50.392
PEI–PEI–PEI 130.61 37.263 132.14 35.152
PEI–PEI–PEP 140.32 27.683 139.37 47.466
PEI–PEP–PEI 146.26 35.441 145.19 70.749
PEP–PEI–PEP 134.89 26.712 135.28 46.080

Equilibrium distances b0 are in nm, the corresponding force constants Kb, in kJ (mol nm2)–1,
equilibrium angles θ0 are in degrees, and the corresponding force constants Kθ, in
kJ (mol deg2)–1. In the 3G model, due to its very large force constant, the PEI–PEC distance can
actually be constrained.

WWW.C-CHEM.ORG FULL PAPER

Wiley Online Library Journal of Computational Chemistry 2019 5

http://WWW.C-CHEM.ORG


with multiplicities ni = 1, 2, 3, 4 and shifts ψ0,i = 0
�
or 180

�
. The

CG torsional parameters obtained by applying this model to
the AA distributions of dihedral angles for the entire RSS are
listed in Table S1 and the much lower order of magnitude of
the force constants, as compared to those for distances and
angles, is apparent.

While including the same CG torsional parameters, we actu-
ally considered three options for deriving the parameters for
distances and angles: (a) 1G-fits both for distances and angles,
(b) 3G-averages for bonds and 1G-fits for angles, and (c) 3G-
averages both for distances and angles. In the following, the
names of the various FF models discussed indicate the particu-
lar choice by “1–1,” “3–1,” or “3–3,” respectively. A “1–3” model
based on 1G-fits for interdistances and 3G-averages for angles
is of little interest, as explained in the next section, and, due to
the substantial differences between the CG and AA distribu-
tions, it was abandoned altogether.

Standard Martini types and LJ parameters from atomistic
structural data

Determining the nonbonded LJ parameters for a CG Martini
model is nontrivial, since, by definition, the beads need to be
included in standard types in order to benefit from compatibil-
ity with the Martini FF as a whole.

Searching for the optimal-type combinations, we identified
our three bead types (PEI, PEP, and PEC) with a wide range of
standard Martini types including small (S) and tiny (T) variants.
As a simplification without notable impact (as shown by a wide
body of test simulations), we assigned the same standard type
(and implicitly the same LJ parameters) to the unprotonated
bead PEI and the terminal PEC bead, however, with PEI and
PEC carrying their real molecular masses and being subject to
different bonded parameters. Indeed, merely acting as ending
groups, the PEC beads only have a marginal influence on the
chain behavior. More precisely, we tested for the neutral PEI
bead several nonpolar types (Nda, Nd, N0, along with their S
and T variants) and even a polar-type P2 (as suggested by

Mahajan and Tang[9]). For the protonated PEP bead (carrying
unitary charge), we considered charged types (Qda, Qd, Q0,
together with S and T variants), which reflect the hydrogen-
bonding (donor) character of this group. Among all the
considered Martini-type combinations for the PEI–PEP pair,
we specifically included also those suggested by Wei and
Luijten,[7] that is, SNda–SQd, and by Mahajan and Tang, namely
P2–Qd. Worth noting, while the first pair includes small types,
the second, based on free energy considerations, operates with
regular types.

Figure 4. Atomistic probability distribution for the PEI–PEI–PEI–PEP dihedral
angle (with triangles) and four-function fit (red line) [eqs. (10)–(11)]. [Color
figure can be viewed at wileyonlinelibrary.com]

Figure 5. Snapshot from typical CG trajectory for the 1/2-uniformly
protonated PEI 51-mer using polarizable water and the SNda–SQd–3–1–P FF
model. The PEI beads are depicted in white, the PEP beads in red, the PEC
beads in blue, and the neutralizing Cl− ions in green. [Color figure can be
viewed at wileyonlinelibrary.com]

Figure 6. Probability distributions for the PEI–PEI distance. The AA results
are depicted with triangles, the CG results obtained with polarizable water
using the SNda–SQd–1–1–P and SNda–SQd–3–1–P FFs are represented with
green and blue circles, respectively. The 1-Gaussian model is shown with
green line and the 3-Gaussian-average model, with red line. [Color figure
can be viewed at wileyonlinelibrary.com]
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Given its crucial role in conferring realism to simulations of
solvated systems with significant charge separations (as is,
indeed, the case of protonated PEI chains), we mainly
employed polarizable water. Yet, in an attempt to also provide
a CG FF model for PEI for less expensive calculations, we also
considered nonpolarizable (single-bead) water.

With a view to classify the different Martini-type combina-
tions assigned to the PEI–PEP bead pair, we conducted for each
of them massive CG MD simulations in conjunction with each
of the three bonded parameter models (“1–1,” “3–1,” and “3–3,”
see previous section), both with polarizable and standard water.
Specifically, the quality of the resulted FF models was assessed
based on the average RMSD of the CG and AA gyration radii
(Rg) and end-to-end distances (Dee) for the entire RSS (12 combi-
nations of PEI chain lengths and protonation patterns). The
acronyms used further on for the various versions of FFs indi-
cate the Martini types for the PEI–PEP pair, along with the
bonded interaction model. For example, the FF model “SNda–
SQd–3–1–P” assigns the small Martini types SNda and SQd to
PEI (and also PEC) and PEP, respectively, using the bonded
parameters obtained by using 3G-averages for bead inter-dis-
tances, 1G-fits for angles, and, in all cases, four-function fits for
torsions. The trailing “P” indicates usage in tandem with polariz-
able CG water.

Figure 5 shows a typical snapshot from the 500-ns long CG
trajectory run for the alternatively protonated PEI51 chain
employing the SNda–SQd–3–1–P FF in conjunction with polariz-
able water and 25 neutralizing Cl− ions.

A qualitative understanding of the manner in which the
bonded parameter models work in conjunction with the stan-
dard Martini-type pairs assigned to PEI and PEP can be grasped
from Figure 6, which shows probability distributions for the
PEI–PEI distance. The AA reference results are depicted with
triangles, while the profiles resulted from CG simulations using
the SNda–SQd–1–1–P FF (SNda type for PEI, SQd type for PEP,

1G-fit functions both for distances and angles, and polarizable
water) and the SNda–SQd–3–1–P FF are represented with green
and blue circles, respectively. One can immediately notice that,
as a result of the additional van der Waals contributions, the
simulated CG probability distribution for the SNda–SQd–1–1–P
FF (green circles) shifts quite substantially from the 1G bonded
model (green line). Quite in contrast, the better localized CG
probability distribution for the SNda–SQd–3–1–P FF (blue cir-
cles) is significantly more consistent both with the 3G-average
model (red line) and the overall AA profile. This finding led us
to no longer considering 1G-fits for distances, but only 3G-aver-
ages, that is, to drop the “1–1” model and exclusively rely on
the “3–1” and “3–3” bonded models.

The effect of 3G-averaging versus 1G-fits on the simulated
CG angular probability distributions is comparatively illustrated
for the PEP–PEI–PEP angle in Figure 7, where the 1G-fit (green
line) appears to follow more closely the AA distribution than
the 3G-average (red line). Also, the CG distributions simulated
with the FFs SNda–SQd–3–1–P (blue circles) and SNda–SQd–
3–3–P (red circles), implementing the 1G and, respectively, the
3G approach for angles, obey the same ordering. These findings
suggest the “3–1” model (3G-averages for distances and 1G-fits
for angles) as the most appropriate for extracting bonded CG
parameters. Nonetheless, as shown below, the “3–3” model
remains a strong competitor, actually yielding the lowest RMSD
between the AA and CG values of the gyration radius and end-
to-end distance.

The simulated CG probability distribution for the PEI–PEI–
PEI–PEI dihedral angle can be seen in Figure 8 to fairly repro-
duce the AA profile. This agreement is exhibited in qualitative
terms by all tested FF models, since they are based on the
same four-function fit for dihedrals. Quite in contrast, the tor-
sional coordinates turn out to be very sensitive to the presence
of protonated beads, and as shown by Figures S8 and S9, the
CG distribution, albeit maintaining the overall aspect, departs
both from the AA values and the fit model due to the addi-
tional charge involved.

Figure 7. Probability distributions for the PEP–PEI–PEP angle. The AA results
are represented with triangles, the CG results obtained with polarizable
water using the SNda–SQd–3–3–P and SNda–SQd–3–1–P FFs are depicted
with red and blue circles, respectively. The 1-Gaussian model is plotted with
continuous green line and the 3-Gaussian-average model, with red line.
[Color figure can be viewed at wileyonlinelibrary.com]

Figure 8. Probability distributions for the PEI–PEI–PEI–PEI dihedral angle
from CG simulations with the SNda–SQd–3–1–P FF model and from AA
simulations. The four-function fit model is plotted with red continuous line.
[Color figure can be viewed at wileyonlinelibrary.com]
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The CG probability distributions for the bead interdistances,
angles, and dihedral angles not discussed above are presented
in Supporting Information Figures S1–S7.

A reliable quantitative classification of the quality of the vari-
ous CG FF models in reproducing AA features can be achieved
based on global structural features of the PEI chains such as the
gyration radius and the end-to-end distance, focusing on their
dependence on the chain length and protonation pattern. This
contrasts with other works, where rather the local environments
are compared by the use of CG and AA radial distribution
functions.

Figure 9a depicts the trajectory-averaged gyration radius
for each of the 12 PEI polymers of the RSS, illustrating the
smooth natural increase of the average spatial extent both
with chain length and protonation fraction. The reference AA
values are marked with empty circles and connected with
dotted lines for each PEI chain size. The CG values (depicted
with filled circles and connected with continuous lines) were
extracted from 500-ns long trajectories using the SNda–SQd–
3–1–P FF model with polarizable water, and can be seen to
fairly follow the AA profiles, yet with a slight overestimation
tendency of less than 5% (which indicates a slightly
increased rigidity). A very similar behavior exhibits the end-
to-end distance (see Fig. 9b), with CG–AA deviations rising to
about 7%.

As stated above, we actually scanned a large set of Martini
types for the PEI–PEP pair in combinations with the “3–1” and
“3–3” models for bonded interactions and polarizable or non-
polarizable water. The RMSD between the CG and AA gyration
radii (Rg) and end-to-end distances (Dee) for the most suitable
Martini-type pairs are listed in Tables 2 and 4 for CG simulations
with polarizable and nonpolarizable water, respectively. These
results illustrate the use of the “3–3” model for bonded interac-
tions, which yields the absolute lowest RMSD values. The con-
trasting presence of the P2–Qd pair (suggested by Mahajan
and Tang[9]) is only intended to illustrate a case of poor CG–AA
agreement.

Optimal Martini FF models for PEI with polarizable
water. With polarizable water (Table 2), the lowest RMSD
values, both for Rg and Dee, can be seen to result for the SNda–
Qd and SNda–SQd pairs (the second being also suggested by
Wei and Luijten[7]). These results are a clear indication that the

(a) (b)

Figure 9. Radius of gyration a) and end-to-end distance b) for the PEI chains of the RSS using polarizable water and the SNda–SQd–3–1–P FF model. AA
(CG) values are represented with empty (filled) circles and are connected with dotted (continuous) lines. [Color figure can be viewed at
wileyonlinelibrary.com]

Table 2. RMSD of the CG and AA gyration radii (Rg) and end-to-end
distances (Dee), averaged over the entire RSS of 12 types of solvated PEI
chains, for selected combinations of standard Martini types assigned to
the PEI–PEP pair, with polarizable water, and using the “3–3” model for
bonded interactions.

RMSD (Rg) RMSD (Dee)

PEI/PEP Qd SQd SQ0 Qd SQd SQ0

SNda 0.75 0.94 1.10 2.29 4.20 4.68
SN0 1.36 1.48 1.46 5.96 5.93 5.49
SNd 1.64 1.81 1.92 5.80 6.59 7.25
P2 3.19 10.08

Figure 10. Radius of gyration for the RSS using polarizable water and the
SNda–Qd–3–3–P FF model. AA (CG) values are represented with empty
(filled) circles and are connected with dotted (continuous) lines. [Color
figure can be viewed at wileyonlinelibrary.com]
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PEI bead needs to be a “small” neutral type, which makes sense
given the three-to-one bead mapping applied in this case. The
somewhat better performance of the SNda–Qd pair (with only
PEI as “small” type) can be judged from Figure 10, where the
CG values of Rg appear to follow more closely the AA results.
Nonetheless, the more uniform overall consistency of the CG
and AA profiles for the SNda–SQd pair (with both PEI and PEP
as “small” types) is apparent from Figure 9a.

In more quantitative terms, Table 3 lists the RMSD values for
the SNda–Qd and SNda–SQd-type pairs in combinations with
both the “3–1” and “3–3” bonded models. As an important find-
ing, the best performance in reproducing the AA results with
polarizable water (lowest RMSD both for Rg and Dee) is achieved
by the SNda–Qd–3–3–P and SNda–SQd–3–1–P FF models and
Figures 9a and 10 illustrate precisely these cases.

The Martini-type combination P2–Qd suggested by Mahajan
and Tang[9] can be seen in Figure 11 to perform poorly for

nonprotonated or weakly protonated PEI chains in polarizable
water. This behavior can be unequivocally ascribed to the
choice of the regular polar-type P2, instead of a “small” neutral
type, for the nonprotonated PEI bead. Indeed, the high P2–P2
interaction (Martini level II),[15] favors artificial clustering of the
PEI units and leads to excessively small gyration radii. More
generally, assigning regular Martini types (such as Nda and P2)
to the PEI bead causes non- or weakly protonated chains to col-
lapse, so the use of a small S-type for PEI appears obligatory. It
is also worth mentioning, that any attempt to involve “tiny”
Martini types leads to significant RMSD values, making these
types inadequate.

Optimal Martini FF model for PEI with nonpolarizable
water. Pursuing the idea of providing a CG FF for PEI to be
used with standard water in expeditious, less expensive simula-
tions, Table 4 indicates SN0–SQ0 as the optimal Martini-type
combination for the PEI–PEP pair in combination with the “3–3”
bonded model (resulting in the lowest RMSD both for Rg and
Dee). It should be noted that the RMSD values are substantially
higher than those for polarizable water (Table 2). While the low-
est RMSD (Rg) for polarizable water is 0.75 (for SNda–Qd), with
standard water the minimum amounts to 2.38. The origin of
this threefold increase of the RMSD emerges by inspecting
Figure 12, where the degradation of the agreement between
the CG and AA Rg values with increasing protonation fraction is
obvious.

The reduction of the CG gyration radii as compared to the
AA values for densly protonated PEI chains is a direct conse-
quence of the increased electrostatic screening (εr = 15) which
is customary applied to avoid spurious charge clustering. This
has, evidently, no effect on nonprotonated chains, for which
there is an excellent agreement between the CG and AA results.
It should also be emphasized (from Supporting Information
Table S2) the significantly lower Martini interaction level for the
SN0–SQ0 pair in standard water (σ = 0.43 nm, ϵ = 2.6 kJ mol–1)

Table 3. RMSD of the CG and AA gyration radii (Rg) and end-to-end distances (Dee), averaged over the entire RSS of 12 types of solvated PEI chains, for
the SNda–Qd and SNda–SQd standard Martini-type combinations assigned to the PEI–PEP pair, with polarizable water, and using the “3–1” and “3–3”
models for bonded interactions.

RMSD (Rg) RMSD (Dee)

Bonded model SNda–Qd SNda–SQd SNda–Qd SNda–SQd

“3–1” 0.92 0.83 2.78 3.81
“3–3” 0.75 0.94 2.29 4.20

Figure 11. Radius of gyration for the RSS using polarizable water and the
P2–Qd–3–3–P FF model. AA (CG) values are represented with empty (filled)
circles and are connected with dotted (continuous) lines. [Color figure can
be viewed at wileyonlinelibrary.com]

Table 4. RMSD of the CG and AA gyration radii (Rg) and end-to-end distances (Dee), averaged over the entire RSS of 12 types of solvated PEI chains, for
selected combinations of standard Martini types assigned to the PEI–PEP pair, with nonpolarizable water, and using the “3–3” model for bonded
interactions.

RMSD (Rg) RMSD (Dee)

PEI/PEP SQ0 SQd Q0 Qd SQ0 SQd Q0 Qd

SN0 2.38 3.44 3.64 7.68 11.19 11.91
SNd 3.64 4.84 4.86 12.18 16.05 15.96
SNda 3.95 5.17 5.45 9.16 13.13 16.71 18.27 30.27
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as compared to the SNda–Qd and SNdq–SQd pairs with polariz-
able water (σ = 0.47 nm, ϵ = 5.6 kJ mol–1).

The Martini-type pair SNda–SQd, which was found to perform
very well with polarizable water, is seen to perform poorly with
standard water, with a more than fourfold increase of the RMSD
as compared to SN0–SQ0. Hence, the optimal FF model for PEI
in standard (nonpolarizable) water is SN0–SQ0–3–3, yet it can
be reliably employed only for weakly protonated PEI chains,
i.e. for protonation fractions lower than 1/4.

Concluding the discussion on the parametrization of the
Martini FF for PEI, we summarize the optimal models in
Table 5. The Martini interaction levels for the PEI–PEP pairs
are to be taken from Marrink et al.[15] (with standard water)
and Yesylevskyy et al.[19] (with polarizable water), while the
bonded parameters are those listed in Table 1 for bead dis-
tances and angles, and in Supporting Information Table S1
for dihedral angles.

As a supplementary indication for the realism of the devel-
oped CG models, we present in Figure 13 center-of-mass diffu-
sion coefficients for each of the PEI chains of the RSS,
extracted from simulations based on the SNda–SQd–3–1–P FF
model. We actually computed the diffusion coefficients,

known to be numerically very sensitive, using the straightfor-
ward implementation of Einstein’s formula without any sophis-
ticated sampling technique. As can be seen, our CG results
reproduce semi-quantitatively the AA values (which are them-
selves affected by some fluctuations), with an overestimation
tendency for lower protonations, but preserving the proper
ordering and the correct, decreasing protonation and chain
length dependencies. Specifically, while the experimental dif-
fusion coefficient (1.2 × 10−6 cm2 s−1) reported by Clamme
et al.[25] for branched PEI (molecular weight 2500) is nicely
reproduced by our AA value for the unprotonated PEI51
(molecular weight 2226), it is overestimated by a factor of
about 2 by our CG result. In fact, it is a matter of common
knowledge that the larger CG bead sizes result in smoother
energy landscapes and artificially increased dynamics. This
calls for the time scale to be reinterpreted, or, equivalently, for
the diffusion coefficients to be scaled down, as recommended
by Marrink et al.[14]

Formation of DNA–PEI complexes

An illustrative way to put the developed Martini FF models
to test is by simulating the formation of solvated DNA–PEI
complexes. Mainly using the new SNda–SQd–3–1–P FF
model and the standard Martini FF for DNA,[17] we per-
formed CG MD simulations of a double Drew–Dickerson
DNA–dodecamer (with one of the strands CGCGAATTCGCG–
CGCGAATTCGCG), enclosed in a cubic box of size 6.76 nm,
constrained along the z-axis, and subject to periodic bound-
ary conditions to mimic an infinitely long chain. We distrib-
uted various numbers of initially linear PEI 15-mers circularly,
parallel to the DNA-axis at a distance of 25 Å. We CG the
atomistic DNA–PEI system and solvated it, adding a suitable
number of neutralizing Na+ or Cl− ions. For each particular
number of PEI chains and protonation fractions 1/2 or 1/4,
we conducted Gromacs simulations spanning 500 ns, using
the main parameters specified under “Methodology” section.

Table 5. Optimal Martini FF models for solvated PEI chains, in increasing
order of the RMSD between the CG and AA values of the gyration radii
and end-to-end distances for the RSS.

Martini type Boltzmann inversion

Model
acronym PEI PEP Distances Angles Dihedrals Water model

SNda–Qd–
3–3–P

SNda Qd 3G 3G 4F Polarizable

SNda–SQd–
3–1–P

SNda SQd 3G 1G 4F Polarizable

SN0–SQ0–
3–3

SN0 SQ0 3G 3G 4F Nonpolarizable

1G, 1-Gaussian-fit; 3G, 3-Gaussian-average; 4F, 4-function fit.

Figure 13. Diffusion coefficients for the RSS with the SNda–SQd–3–1–P FF
model. AA (CG) values are represented with empty (filled) circles and are
connected with dotted (continuous) lines. [Color figure can be viewed at
wileyonlinelibrary.com]

Figure 12. Radius of gyration for the RSS using nonpolarizable water and the
SN0–SQ0–3–3 FF model. AA (CG) values are represented with empty (filled)
circles and are connected with dotted (continuous) lines. [Color figure can
be viewed at wileyonlinelibrary.com]
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Figures 14a and 14b show for a system with four 1/2-protonated
PEI15 chains, 2565 polarizable water bead triplets, and 10 neutraliz-
ing Na+ ions (a) the initial configuration and (b) a snapshot from a
CG simulation, illustrating the uniform condensation of the PEI
chains about the DNA helix.

To characterize the formation of DNA–PEI complexes, we
analyzed the affinity between the phosphate groups (BB1
beads, as defined by Uusitalo et al.[17]) of DNA and the proton-
ated PEP beads of the PEI chains, using the potential of mean
force (PMF),

PMF=−kBT logPBB1 – PEP, ð12Þ

defined in terms of the normalized probability distribution of
the radial BB1–PEP distance PBB1–PEP (kB is Boltzmann’s constant
and T is the temperature). Figure 15 depicts the PMF for sys-
tems composed of 2, 4, 6, and 8 alternatively protonated, and,
respectively, 1/4-protonated PEI 15-mers. It can be noticed that all
the PMF profiles show the closest minimum at about 0.46 nm.

Figure 14. Top view and side view of a double Drew–Dickerson DNA–dodecamer with four alternatively protonated PEI15 chains, 10 neutralizing Na+ ions,
and 2565 × 3 polarizable water beads, enclosed in a cubic box of size 6.9 nm: a) initial configuration and b) snapshot from a CG simulation (water is not
shown), using the new SNda–SQd–3–1–P Martini FF model. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 15. PMF profiles from GG simulations for the interaction between the
phosphate groups (BB1 beads) of a double Drew–Dickerson DNA–dodecamer and
the protonated PEP beads of 2, 4, 6, and 8 alternatively protonated, and, respectively,
1/4-protonated PEI 15-mers. [Color figure can be viewed atwileyonlinelibrary.com]
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While the profiles for the 1/2-protonated PEI chains are practically
indiscernible, essentially exhibiting the same affinity pattern of the
PEP beads for the BB1 beads, the dotted curve corresponding
to the 1/4-protonated chains is shifted to higher values. The
higher affinity in the case of the 1/2-protonation can be read-
ily explained based on the fact that the nominal distance
between consecutive PEP beads is comparable to that
between BB1 phosphates beads along the DNA backbone,
offering an energetically more favorable PEP–BB1 pairing pat-
tern. Lower protonation fractions result in a less efficient pack-
ing of the DNA helix by the PEI chains.

Referring to the N/P ratio of positively charged PEI amino
groups (N) to negatively charged DNA phosphate groups (P),
the enhanced complexation of DNA for alternative proton-
ation (N/P = 1.47, for the eight PEI15 chains considered for
illustration) as compared to 1/4-protonation (N/P = 0.63)
obviously correlates with N/P ratios higher than 1. This result
is consistent with relative fluorescence measurements (see
Fig. 2 of Kunath et al.[26]), in which the DNA complexation
efficiency in the presence of low-molecular-weight PEI is
demonstrated to increase with the N/P ratio, showing satura-
tion for ratios exceeding 2.

A more detailed analysis regarding the formation of DNA–PEI
complexes, including DNA–PEI condensation results for signifi-
cantly larger systems, will be offered in a follow-up paper.

Conclusions

We report a new CG Martini FF model for PEI chains, with
variants to be respectively used in conjunction with polariz-
able and standard water. The bonded interactions for bead
interdistances, angles, and dihedral angles were parame-
trized by Boltzmann inversion from bead-based probability
distributions yielded by accurate AA simulations performed
using our recently published CHARMM FF for PEI. Assigna-
tion of standard Martini types to the PEI beads (and implic-
itly of LJ parameters) was achieved by matching AA
gyration radii, end-to-end distances, and probability distri-
butions for a representative set of 12 solvated PEI chains
(of three lengths and four protonation fractions) to the CG
results obtained from comprehensive MD simulations scan-
ning large sets of Martini-type combinations. One of
our optimal Martini FF models relies on a pair of standard
Martini bead types that was also proposed by Wei and
Luijten,[7] involving, however, a significantly more realistic
bonded parameter set.

Essential modeling aspects affecting the realism of the devel-
oped FF models, such as the relevance of polarizable water or
options for electrostatics, are discussed in detail.

Combining our Martini FF for PEI with the standard Martini
FF for DNA of Uusitalo et al.,[17] we carried out MD simula-
tions of solvated DNA–PEI systems. Focusing on the distribu-
tion of distances between the protonated units of PEI (PEP)
and the negative phosphate groups of DNA (BB1), we discuss
the formation of DNA–PEI complexes in terms of the PMF for
the PEP–BB1 interaction in dependence of PEI chain size and
protonation pattern. Besides providing insights into the

formation of the DNA–PEI polyplexes, our developed FF
models open the way for ample, realistic MD simulations of
DNA–PEI condensation.
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