SYLLABUS

1. Information regarding the program

1.1 Higher education institution	Babeş-Bolyai University	
1.2 Faculty	Faculty of Physics	
1.3 Department	Doctoral School of Physics	
1.4 Field of study	Physics	
1.5 Study cycle Doctorate		
1.6 Study program / Qualification	Doctoral training/PhD in Physics	

2. Course data

2.1 Name of discipline			Theoretical and computational methods in solid state				
			physics				
2.2 Teacher responsible for			CS II dr. Diana Benea, Prof. dr. Ioan Grosu, Prof. dr.				
lectures			Coriolan Tiușan				
2.3 Teacher responsible for			CS	CS II dr. Diana Benea, Prof. dr. Ioan Grosu, Prof. dr.			
seminars			Co	oriolan Tiușan			
2.4 Year of I 2.5 Semester		Ι	2.6 Type of	Е	2.7 Course	DS	
study				evaluation		framework	

3. Estimated total time of teaching activities (hours per semester)

3.1 Hours per week	3	Out of which:	2	3.3 Seminars /	1
		3.2 Lectures		Laboratory classes	
3.4 Total hours in the curriculum	36	Out of which:	24	3.6 Seminars /	12
		3.5 Lectures		Laboratory classes	
Allocation of study time:					89
Study supported by textbooks, other course materials, recommended bibliography and					34
personal student notes					
Additional learning activities in the library, on specialized online platforms and in the field					24
Preparation of seminars/laboratory classes, topics, papers, portfolios and essays					15
Tutoring					12
Examinations				4	
Other activities					_

3.9 Total individual study hours	89
3.10 Total hours per semester	125
3.11 Number of ECTS credits	10

4. Prerequisites (if necessary)

υ.	J.
	rofessional competences
	ional co
	Professi

4.1 Curriculum	Quantum mechanics, Statistical physics, Physics of atoms and molecules,
	Numerical methods, Calculus, Algebra
4.2 Competences	- computational skills, - introductory methods of theoretical physics

5. Conditions (where applicable)

5.1 Conducting lectures	Course hall, appropriate board, projector, dedicated
	software, computer
5.2 Conducting Course hall, appropriate board, projector, dedicated	
seminars/laboratory classes	software, computer network

6. Specific competences acquired

- C1. Use of advanced knowledge of physics, mathematics and chemistry of solids for studies in condensed state physics and materials science. The ability to analyze and synthesize physical data, the ability to model complex phenomena.
- C2. Capitalizing on the physical fundamentals, methods and tools of solid state physics and materials science for specific production, expertise and monitoring activities. Acquiring a multi- and interdisciplinary way of thinking.
- C3. Planning and conducting experiments to assess uncertainty and interpret results. Use of laboratory equipment for basic research, equipment and industrial laboratories for conducting research experiments. Planning and implementing independent experiments or experimental investigations and evaluating the results
- C4. Communicating complex scientific ideas, conclusions or results of a scientific experiment. The ability to obtain and argue scientific results, the ability to produce scientific papers and to liaise with the editorial board of scientific journals in the field.

Identification and appropriate use of the main physical laws and principles in a given context.

Transversal competencies

CT1. Carrying out professional tasks efficiently and responsibly in compliance with the legislation and deontology specific to the field under qualified assistance. Responsible performance of professional duties in terms of self-assessment decision-making. CT2. Effective work in multidisciplinary teams on various hierarchical levels. Identification of roles and responsibilities in a team and the application of communication techniques and effective work within the team, based on dialogue, positive attitude, mutual respect, diversity and multiculturalism as well as a continuous improvement of the activity.

CT3. Effective use of information sources and communication resources and assisted professional training, both in Romanian and in an international language. Identification of opportunities for continuous training and effective utilization of learning resources and techniques for personal development and adaptation to the requirements of the labor market.

7. Course objectives (based on the acquired competencies grid)

7.1 The general objective of the	- Acquisition of theoretical and computational notions	
discipline	regarding the use of advanced methods in the study of the	
	condensed state	
7.2 Specific objectives	- Acquisition of notions related to:	
	- Writing in the second quantification of a series of	
	operators and groups of operators.	
	- Using the method of the equation of motion to determine	
	the energy spectrum, in the case of systems of many	
	particles with interactions.	
	- Determination of some properties of many-particle	
	systems, in the Hartree and Hartree-Fock approximations.	
	- Determination of electrical/magnetic properties of solids	
	based on their crystalline structure	
	- Determination of some spectroscopic properties of solids	
	based on their crystalline structure	
	- Establishing correlations between theoretical calculations	
	and experimental data.	

8. Content

8.1	Lectures	Teaching methods	Comments
1.	Introduction to Density Functional Theory. Principles.	Interactive lecture,	4 hours
	The Kohn-Sham equation. Local density	Directed discussion,	
	approximation. Electronic structure of solids. Multiple	debate, Case-based	

	scattering theory (Korringa-Kohn-Rostocker). Green	learning, Just-in-	
	functions. Calculating observables.	time teaching	
	Turicularia, Carcarating Observation	time teaching	
2.	Ab-inito methods for describing the		4 hours
	magnetic/spectroscopic properties of solids: Compton		
	scattering, positron annihilation, magnetic dichroism in		
	X-ray absorption, XPS spectroscopy, the Heisenberg		
	model for exchange coupling.		
3.	The second quantization, fermions and bosons.		3 hours
	Operators in the second quantization, the two-particle		
	interaction.		
4.	Representations. The method of the equation of motion.		5 hours
	Hartree and Hartree-Fock approximations		
5.	Simple quantum models applied in surface science,		4 hours
	nano-magnetism and spintronics: the Stoner		
	Hamiltonian, the Rahba Hamiltonian and spin		
	manipulation in electric fields, the Rashba-Stoner		
	Hamiltonian spin precession in electric field and voltage		
	controlled magnetic anisotropy.		
6.	Micromagnetic and atomistic modeling of magnetic		2 hours
	systems, nano and heterostructures.		
7.	Exact diaginalization of 1D and 2D quantum systems:		2 hours
	single spin NMR manipulation, Ising chains, 2D lattices,		
	quantum skyrmions and quantum gates with		
	skyrmionic qubits.		
	, , , , , , , , , , , , , , , , , , ,		
8.2	Seminars / laboratory classes	Teaching methods	Comments
	Self-consistent calculations of the electronic band	Problem based	4 hours
str	ucture for selected systems. Calculation of the density of	learning, Project	
	tes. Dispersion relation and Bloch spectral functions.	based learning,	
	lculation of the photoemission spectrum in the valence	Inquiry guided	
	nd. Calculation of exchange coupling parameters for	learning,	
	ferent magnetic systems. Stability of spine structures.	Experiential	
		learning	
2. 0	Operators in the second quantization, the two-particle		4 hours
	eraction.		
3. 1	Photoemission/angle resolved photoemission		1 hour
	ectoscopy and Datta and Dass spin transistor		
1	1	I	I

4. Macrospin LLG for magnetization dynamics: electric	1 hour
field magnetization manipulation in magnetic tunnel	
junctions	
5. VAMPIRE (atomistic) and Mumax3 (micromagnetic)	1 hour
modelling of chiral magnetic structures, skyrmions	
6. ED examples using Quspin package for NMR precession	1 hour
of single spin and Ising chains	

Bibliography

- 1. SPRKKR manual H. Ebert, LMU Munich 2017 (http://ebert.cup.uni-muenchen.de)
- 2. Structura electronica de benzi cu aplicatii in solide, D. Benea 2014 (lucrari de laborator).
- 3. P. Strange, Relativistic Quantum Mechanics (Cambridge University Press, 1998).
- 4. H. Ebert, J. Minar, and D. Kodderitzsch, Rep. Prog. Phys. 74, 096501 (2011).
- 5. A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and V. A. Gubanov, J.Magn.Magn. Materials 67, 65 (1987).
- 6. U. Mizutani, Introduction to the Electron Theory of Metals, Cambridge University Press 2001.
- 7. D. Pines, P. Nozieres, "The Theory of Quantum Liquids", vol.I, Benjamin, New York, (1966)
- 8. I.Tifrea, I.Grosu, M.Crisan, "Metode cuantice pentru studiul sistemelor cu multe particule. Aplicatii la sisteme fermionice si bosonice", Presa Universitara Clujeana, (2005)
- 9. I.Grosu, I.Tifrea, "Teoria materiei condensate. Probleme", Casa Cartii de Stiinta, Cluj, (2006)
- 10. Barnes, S., Ieda, J. & Maekawa, S. Rashba Spin-Orbit Anisotropy and the Electric Field Control of Magnetism. *Sci Rep* **4**, 4105 (2014). https://doi.org/10.1038/srep04105.
- 11. J. M. D. Coey, Magnetism and Magnetic Materials, Cambridge University Press (2010), ISBN: 9780511845000.
- 12. R. Feynman, The Feynman Lectures on Physics, Vol. III: The New Millennium Edition: Quantum Mechanics, ISBN 0465023827, 9780465023820.
- 13. E.I. Rashba, Fiz. Tverd. Tela S.-Peterburg 2, 1224 (1960) Sov. Phys. Solid State 2, 1109 1960; Yu. A. Bychkov and E.I. Rashba, Pis'ma Zh. Eksp. Teor. Fiz. 39, 66 1984 JETP Lett. 39, 78 (1984).

9. Aligning the contents of the discipline with the expectations of the epistemic community, representatives, professional associations and standard employers operating in the program field

The content of the discipline is in line with what is studied in other university centers in the country and abroad. In order to adapt to the requirements imposed by the labor market, the content of the discipline was harmonized with the requirements imposed by the specifics of postgraduate education, research institutes and the business environment.

10. Examination

Activity type	10.1 Evaluation criteria	10.2 Evaluation	10.3 Weight in
		methods	the final grade
10.4 Lectures	Assessment of knowledge	Written exam	75%
10.5 Seminars /	Activity during seminars	Discussions,	25%
laboratory classes		answers to	
		questions	
10.6 Minimum perfo	ormance standard		
Choosing a computa	ational and a theoretical method	for a certain kind of char	racterization.
Signature of course n	Signature of s	eminar	
	coordinator		
CS II. dr. Diana Benea	CS II dr. Dian	a Benea	
Prof. dr. Ioan Grosu	Prof. dr. Ioan	Grosu	
Prof. dr. Coriolan Tiu	șan Prof. dr. Corio	olan Tiusan	

Date

21.09.2024

Signature

Head of department

Prof. dr. Vasile Chiș