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ABSTRACT

This study investigates the dynamics of epidemics in a heterogeneous environment using
simulations of active matter particles. The susceptible-infected-recovered (S-I-R) model is
integrated into the active matter system, considering variations in the infection and recovery
rates. The effects of introducing quenched disorder in the form of immobile obstacles are also
explored. The results show that the presence of quenched disorder increases the occurrence
of failed outbreaks and prolongs successful epidemics, particularly at low infection rates. In
contrast, at high infection rates, the system becomes less sensitive to quenched disorder and
exhibits well-defined spatial fronts. The study suggests that the assumption of homogeneous
mixing breaks down in the presence of quenched disorder, highlighting the importance of
spatial heterogeneity in epidemic dynamics. The potential for experimental realization using
light-activated colloids is discussed, offering a tabletop approach to model epidemic spreading
with active matter. The research has been published in Scientific Reports (citation: [11]).
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Introduction

The spread of diseases in a diverse environment has gained global attention. Extensive
modeling efforts have been dedicated to controlling or predicting the progression of the pan-
demic. Most of these models are based on the susceptible-infected-removed (S-I-R) model
introduced by Kermack and McKendrick [17] almost a century ago. In this model, the pop-
ulation is divided into susceptible (S), infected (I), and recovered (R) individuals, and the
epidemic’s dynamics are governed by transition rates between these categories. In a specific
group, individuals cannot be differentiated, and any spatial characteristics of the system are
disregarded [29]. Although S-I-R models and their numerous variations may seem straight-
forward, they offer robust capabilities for predicting the overall trajectory of an epidemic.
However, these models struggle to predict the specific course of real-world epidemics due
to the heterogeneity in individual susceptibility, spatial contacts, and mixing behaviors [15],
leading to unpredictable stochastic effects.

In this study, simulations of a large collection of active matter particles within the MIPS
regime were conducted, leading to the spontaneous formation of a giant cluster. This model
is integrated with S-I-R interactions, where all particles initially fall into the susceptible (S)
category but have a probability β of becoming infected upon direct contact with an infected
(I) particle. Infected particles then transition spontaneously to the recovered (R) state at a
rate µ, with no possibility of reinfection. The investigation focuses on the evolution of epi-
demics by varying the ratio of β/µ, while also exploring the effects of introducing quenched
disorder in the form of immobile obstacles. As the number of immobile obstacles increases in
the active matter system, the number of clusters grows while their sizes decrease. Through
numerous realizations, we observe that the inclusion of quenched disorder amplifies the oc-
currence of "failed" outbreaks for small β/µ ratios and prolongs the average duration of
successful epidemics. When β/µ is sufficiently large, the system becomes less sensitive to the
presence of quenched disorder, approaching the mean field limit where the epidemic propa-
gates through well-defined spatial fronts. Furthermore, we investigate the average number of
susceptible particles surrounding an infective over time and find that this metric undergoes
moderate changes due to the addition of quenched disorder in the high β/µ mean field limit,
but experiences significant alterations as quenched disorder is introduced with lower β/µ

ratios.

The findings suggest that at low β/µ ratios, the assumption of homogeneous mixing no
longer holds true, indicating a departure from mass action in the infection process. In such
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cases, the system becomes highly sensitive to spatial quenched disorder. On the other hand,
in the high β/µ regime, although the epidemic spreads through spatially localized fronts,
the mixing hypothesis remains more applicable. This implies that localized interventions to
mitigate the epidemic would be more effective at low β/µ ratios but would lose effectiveness
in higher β/µ regimes unless implemented across the entire population.

Lastly, we explore the potential experimental realization of our system by employing feed-
back control of light-activated colloids, allowing for individual-level control over the colloids’
active behavior. Previous experiments involving such systems have successfully demonstrated
group formation, responsive states, and the implementation of predator-prey models [1,7,19].
Furthermore, there exist various approaches to introduce spatial heterogeneities in active
matter systems [3, 20, 26, 32, 35, 39]. By leveraging these techniques, it becomes possible to
mimic the S-I-R model, both with and without spatial disorder, creating tabletop models of
epidemic spreading using active matter.

This work is already published in Scientific Reports [11] (see the citation).
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Chapter 1

Description of the field

This chapter provides insights into active matter, S-I-R models, and motivates the use
of active matter for modeling the spread of diseases. There is also a description of molecular
dynamics simulations, because this study was also realised by performing simulations.

1.1 Active matter

A review by Bechinger et al. [2] describes the properties of active matter and it’s differ-
ences from simple Brownian particles very well:

Active matter systems possess the remarkable ability to extract energy from their sur-
roundings and exist far from thermal equilibrium. This unique characteristic gives rise to a
range of intriguing phenomena that are inaccessible to equilibrium matter, such as collective
swarming and the emergence of collective properties. Exploring active matter offers excit-
ing prospects for uncovering new physics and developing innovative strategies for designing
intelligent devices and materials. In recent years, there has been a significant and growing
effort to advance this field and explore its applications across various disciplines, including
statistical physics, biology, robotics, social transport, soft matter, and biomedicine.

One prominent example of active matter consists of natural and artificial entities capable
of self-propulsion. Initially, self-propelled particles were studied to model the collective be-
havior of animal swarms at a macroscopic scale. The "Boids model" simulated the aggregate
motion of bird flocks, land animal herds, and fish schools in computer graphics applications.
Later the Vicsek model was introduced as a specific case. In the Vicsek model, a swarm is
represented by a collection of self-propelling particles that move at a constant speed while
tending to align with the average direction of motion of nearby particles in their local vicin-
ity. Swarming systems exhibit emergent behaviors at various scales, some of which are robust
and universal, independent of the specific types of animals constituting the swarm. Conse-
quently, a challenge for theoretical physics has been to develop minimal statistical models
capable of capturing these characteristics.
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1.2 Susceptible-Infected-Recovered model

The S-I-R model [15, 17] is a widely used mathematical framework for studying the
spread of infectious diseases within a population. It divides the population into three distinct
compartments: Susceptible (S), Infected (I), and Recovered (R).

• Susceptible (S): Individuals in this compartment are susceptible to contracting the
disease. They have not been infected before and can become infected if they come into
contact with infectious individuals.

• Infected (I): Individuals in this compartment are currently infected with the disease.
They can transmit the infection to susceptible individuals through direct contact or
other means of transmission.

• Recovered (R): Individuals in this compartment have recovered from the infection and
are now immune to it. They cannot be reinfected and do not contribute to the further
spread of the disease.

The S-I-R model assumes that the total population remains constant over time and
that individuals move between these compartments based on certain rates. Typically, the
transition from the susceptible to the infected state occurs at a rate determined by the
infection rate (β), representing the likelihood of transmission per contact between susceptible
and infected individuals. The transition from the infected to the recovered state occurs at a
rate determined by the recovery rate (µ), representing the average duration of the infection.

By analyzing the dynamics of these transitions, the SIR model provides insights into
the progression and control of epidemics, such as the peak infection rate, the total num-
ber of infections, and the effectiveness of interventions like vaccination or social distancing
measures.

1.3 Molecular dynamics simulation

Molecular dynamics (MD) simulations [13,33] are computational methods used to study
the behavior and interactions of atoms and molecules over time. They simulate the move-
ment and interactions of particles by solving the equations of motion derived from classical
mechanics or quantum mechanics, depending on the level of detail required.

In molecular dynamics simulations, the atoms or molecules in a system are represented as
particles, and their positions, velocities, and forces are tracked as the simulation progresses.
The behavior of the system is determined by the interatomic or intermolecular potential
energy function, which describes the forces between the particles. This potential energy
function accounts for various types of interactions, such as bond stretching, angle bending,
van der Waals forces, and electrostatic interactions.

The simulation starts with an initial configuration of the system, typically obtained from
experimental data or by generating a random arrangement of particles. The equations of
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motion are then numerically integrated to update the positions and velocities of the particles
over small time steps. This iterative process is repeated for a desired duration, allowing the
system to evolve dynamically.

Molecular dynamics simulations can provide valuable insights into the behavior and prop-
erties of materials at the atomic or molecular level. They can reveal information about ther-
modynamic properties, phase transitions, chemical reactions, diffusion processes, and other
dynamical phenomena. By varying simulation parameters, such as temperature, pressure,
or composition, researchers can explore the effect of different conditions on the system’s
behavior.

MD simulations have broad applications in various fields, including chemistry, materials
science, biology, and physics. They are used to study diverse systems such as liquids, solids,
proteins, nucleic acids, polymers, nanoparticles, and complex biomolecular assemblies. The
results obtained from MD simulations can complement experimental observations, guide the
design of new materials, and provide detailed atomistic understanding of molecular processes
that are difficult to probe experimentally.

1.4 State of the art

To address the challenge of heterogeneity, various approaches have been developed. One
approach involves dividing the population into subpopulations with different infection and
recovery rates or subdividing it geographically into regions with diffusive terms [9,16]. Patch-
iness can also be incorporated to introduce additional heterogeneities [18, 40]. Extensive re-
search has been conducted on linking individuals through finite-dimensional networks instead
of an infinite-dimensional mean field [29]. However, the intricacies of the network introduce
further complexity to the problem, as decisions need to be made regarding the suitable degree
distribution for network connectivity. Additionally, determining whether the network should
remain static or evolve independently or in response to the disease’s progression [36,44] adds
to the complexity. The impact of heterogeneity in transmission and susceptibility has been
extensively discussed [23].

Agent-Based Modeling (ABM) or Individual Based Modeling [21] provides a more de-
tailed approach by treating each individual as a separate, interacting unit. ABM allows for
heterogeneity at different levels, including individual susceptibility, contact patterns, spatial
clustering, and short/long-range transportation [8,14]. However, ABM models face challenges
in computational complexity and the calibration of numerous parameters with limited real-
world data.

Efforts to find a middle ground in ABM, where some details are abstracted while cap-
turing meaningful spatial heterogeneity, have surprisingly been limited. This balance can be
achieved by either developing more intricate analytical models or simpler simulation-based
models. One of the earliest approaches to simplify simulation-based models was through the
use of cellular automata, allowing for varied mobility of individual agents within the mean-
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field limit [4]. Individuals following S-I-R interactions have also been represented as moving
particles with characteristics such as driven diffusion [12], unidirectional movement [30], oc-
casional long-range jumps [5], different velocities [38], or confinement to specific regions [42].
To alleviate the computational burden associated with such methods, dynamic density func-
tional theory techniques can be employed [41].

Recent advancements in active matter models [2,22], which involve self-propelled particles
interacting on a spatial landscape with or without disorder, have opened up new possibilities
for combining them with S-I-R type models. These active particles can exhibit behaviors
such as run-and-tumble [31] or driven diffusion [28]. In specific cases, a low-density active
matter system was able to replicate the mean field behavior of S-I-R [25]. However, there
has been limited research on integrating S-I-R modeling with active matter in general. For
instance, Paoluzzi et al. explored S-I-R dynamics to investigate information exchange during
active clustering transitions [28] but did not focus on the actual spreading of the epidemic.
More recently, Zhao et al. examined contagion dynamics in self-propelled flocking models
and discovered that ordered homogeneous states hinder disease spreading, while bands and
clustering promote it [45].

Working with an active matter system offers several advantages. The well-known motility-
induced phase separation (MIPS) transition, where a low-density gas phase transforms into
coexisting high and low density regions based on the density and mobility of active par-
ticles [6, 10, 27, 34], naturally separates particles into clustered communities connected by
disordered transport pathways. The interactions between particles can be seen as an adap-
tive network that can be adjusted to evolve on the same or different time scales as the disease
progresses. Spatial heterogeneity arises organically within the MIPS regime, but it can also
be introduced using walls, traps, or obstacles. Disease dynamics in such systems can be rep-
resented by monitoring the temporal evolution of the number of susceptible (S(t)), infected
(I(t)), and recovered (R(t)) individuals over time, capturing the effects of heterogeneities
that are averaged out in the mean field approximations of the standard S-I-R model.
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Chapter 2

The simulation

The simulation was written in C, and is performed on a two-dimensional system with a
size of L × L, where L = 200, and periodic boundary conditions are applied in both the x

and y directions. The system consists of N = 5000 active particles.

x

y

Figure 2.1: The depicted image illustrates a sample comprising run-and-tumble S-I-R par-
ticles in a regime of motility-induced phase separation. The particles undergo transitions
between susceptible (S, represented in yellow), infected (I, represented in red), and recov-
ered (R, represented in blue) states. In this case, the ratio of β/µ is 0.5. Additionally, there is
the presence of quenched disorder in the form of Nobs = 800 immobile obstacles (depicted in
black). This quenched disorder leads to the formation of numerous small clusters alongside
the prominent motility-induced phase separation (MIPS) cluster.
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2.1 Equation of motion

The movement of the particles is determined by numerically integrating the following
equation over discrete time steps (∆t = 0.005):

αdvi = Fdd
i + Fm

i + Fobs
i (2.1)

, where αd = 1.0 is the damping constant, vi =
dri
dt

is the velocity and ri is the position
of particle i. Fdd

i =
∑N

i ̸=j k(2ra − |rij|)Θ(2ra − |rij|)r̂ij is the harmonic repulsive potential
interaction between two particles, where Θ if the Heaviside step function, k = 20 is the
spring force, ra = 1.0 is the radius of a particle, rij = ri − rj and r̂ij = rij/|rij|.

Each particle has a motor force Fm
i = FMm̂i, where FM is the magnitude of the force

and m̂i represents a randomly selected direction. This motor force acts on the particle for
a duration of τl, after which the particle instantaneously changes its direction to another
randomly chosen direction, creating a run-and-tumble behavior. The duration τl for each
particle is randomly chosen after each change in direction from the range 1.5×104 to 3.0×104

simulation time steps. The motor force FM is set to 1.5 for susceptible and recovered particles,
creating the motility-induced phase separated (MIPS) regime in the absence of quenched
disorder [39]. Infected particles have their motor force reduced to FM = 1.0.

In some simulations, we introduce quenched disorder in the form of Nobs obstacles, which
exert the force Fobs. The force between particles and obstacles is the same as the particle-
particle interaction force, but the obstacles remain immobile. Figure 2.1 shows an image of
the system with obstacles.

2.2 S-I-R model dynamics and state transitions

The active particles in the system are categorized into three states: S (susceptible), I
(infected), or R (recovered). When an S particle directly interacts with an I particle, there
is a probability β that the S particle transitions to the I state for each simulation time step
that the contact persists. If an S particle is in contact with n I particles at a given time
step, the probability of infection is approximately nβ, calculated as 1− (1−β)n. Transitions
from the I state to the R state occur with a probability of µ at each simulation time step,
independent of the state of other particles in contact with the I particle. Consequently, the
mean duration of the infected state is 1/µ simulation time steps.

The R state is absorbing, and particles in the R state do not undergo further state
transitions. In this S-I-R model, the infected I particles are only transient, and the system
will eventually consist of only S and/or R particles.

It is important to note that the mean-field rates governing S→I and I→R transitions,
as well as determining the basic reproductive number R0 in classical S-I-R models, do not
directly correspond to the values of β and µ used as microscopic parameters in our model. In
agent-based models (ABMs), the effective mean-field rates emerge as quantities rather than
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being predefined parameters.

2.3 Initialization

To initialize the system, the particles are randomly distributed throughout the sample
and all particles are assigned to the susceptible (S) state. The system is allowed to evolve
for 5× 105 simulation time steps until a stable giant cluster emerges in the motility-induced
phase separated (MIPS) regime. This state is considered the initial condition at t = 0.
Subsequently, 5 particles are randomly selected and their state is changed to infected (I).
These particles serve as the index cases, deliberately choosing 5 instead of 1 to reduce the
likelihood of a failed outbreak.

For setting the parameters of the simulations, so called parameter files (see the following
subsection 2.3.1) are used.

2.3.1 Parameter file

To be able to run simulations with different parameters, the simulation needs a parameter
file as input. The parameter file has the following structure:

SX 200.0

SY 200.0

N_particles 5000

N_obstacles 0

dt 0.005

total_runtime 500000

echo_time 1000

movie_time 5000

generic_particle_R 1.0

generic_particle_k_spring 20.0

generic_particle_motor_minimum_time 15000

generic_particle_motor_force 1.5

generic_Iparticle_motor_force 1.0

generic_obstacle_R 1.0

number_of_initial_I 5

beta 0.000008

mu 0.00002

seedToSet 0

More about the parameters:

• The SX and the SY parameters define the size of the system in the x and y directions
respectively.
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• The N_particles and the N_obstacles define the number of particles and the number
of obstacles in the system.

• The dt defines the size of one simulation time steps. The total_runtime defines the
number of simulation time steps to run before initializing the I particles.

• The echo_time defines after how many simulation time steps should the program write
to the console, and after how many simulation time steps should the measures be saved
into a file. The movie_time defines after how many time steps should the program write
the coordinates and the details of the particles into the movie file.

• The generic_particle_R defines the radius of a particle, the
generic_particle_k_spring defines the spring force of the particle, the
generic_particle_motor_minimum_time defines the lower limit of τl (the up-
per limit is the double of the lower limit), the generic_particle_motor_force

defines the size of the motor force vector for the S and R particles, the
generic_Iparticle_motor_force defines the size of the motor force vector for
the I particles, the generic_obstacle_R defines the radius of the obstacles.

• The number_of_initial_I defines the number of randomly selected S particles to
turn into I, the beta defines the value of the S→I probability, the mu defines the I→R
probability.

• The seedToSet defines the random seed used for random number generation.

2.4 Optimizations

Verlet lists [43], named after Loup Verlet, are a commonly used algorithmic technique in
molecular dynamics simulations to efficiently compute pairwise interactions between parti-
cles. They are particularly useful in simulations involving large systems with many interacting
particles, such as the system in this study.

The basic idea behind Verlet lists is to create a spatial data structure that stores infor-
mation about the neighboring particles for each particle in the system. This data structure
is constructed based on a cutoff distance, which determines the maximum distance at which
particles can interact with each other. The construction of Verlet lists typically involves two
main steps: initialization and updating.

During the initialization step, the Verlet lists are created by iterating over all particles
in the system and identifying their neighboring particles within the specified cutoff distance.
This process involves calculating the distances between particles and storing the relevant
information in the lists.

Once the Verlet lists are initialized, they are updated at regular intervals or whenever
particles move a significant distance. The update process involves checking whether any
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particles have moved outside the current neighboring region or entered the region of other
particles. If particles have moved beyond a certain threshold distance, the Verlet lists are
reconstructed to include the updated set of neighboring particles.

The main advantage of Verlet lists is that they reduce the number of pairwise interactions
that need to be computed in each simulation time step. Instead of evaluating interactions
between all pairs of particles in the system, Verlet lists allow for a more selective approach
by considering only the particles within the cutoff distance. This leads to significant compu-
tational savings, especially in systems with low particle density or when the interactions are
short-ranged.

However, it is important to note that Verlet lists introduce some overhead due to the
need for list construction and updating. The choice of the cutoff distance also requires careful
consideration, as a too small value may result in missing interactions, while a too large value
may reduce the efficiency gained from using Verlet lists.

The procedure for computing interactions between particles and obstacles differs from
that of particle-particle interactions. To handle the obstacle interactions, we adopt a grid-
based approach with a fixed grid spacing. Each obstacle is placed within the cell that contains
its center, forming a grid structure. Each grid cell can accommodate one or more obstacles, as
needed. This approach is feasible because the obstacles remain stationary after initialization.

To calculate the forces exerted on a particle by the obstacles, we first determine the grid
cell that contains the particle’s center. We then consider interactions between the particle
and all the obstacles present in the current cell, as well as those in neighboring cells. By
examining the obstacles within these cells, we can accurately compute the forces acting on
the particle due to the obstacles.

14
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Chapter 3

Data processing

The system undergoes continuous evolution involving particle motion and state reactions
(S, I, R) until there are no more infected (I) particles present. We conduct 1000 realizations
for each set of parameters.

Due to the considerable variation in the duration td = min {t > 0 : I(t) = 0} of individual
epidemics, as demonstrated in the results (Chapter 4), we express time using the scaled
quantity t̃ = t/td. Using scaled time, we analyze epidemic curves s(t̃) = S(t̃)/N , i(t̃) =

I(t̃)/N , and r(t̃) = R(t̃)/N to visually compare epidemic progression across different β/µ

ratios.
Additionally, we measure the peak infective fraction imax and the final susceptible fraction

s∞, which are commonly used indicators of epidemic severity.
To gain insights into the spatial dynamics of the system, we calculate the average number

of susceptible particles surrounding an infective, η(t̃) = I−1(t̃)
∑I(t̃)

i

∑S(t̃)
j I(|rij(t̃)| = 2ra),

where I represents the indicator function and the sums over i and j encompass infected
and susceptible particles, respectively. In a two-dimensional system with particles of iden-
tical radii ra, the maximum coordination number is z = 6. When infected individuals are
well-mixed, the average number of susceptible particles surrounding an infective, η(t̃), is
proportional to S(t̃); specifically, η(t̃) ∝ zcS(t̃)/N , where zc denotes the average coordina-
tion number of the particles. Deviations from this behavior indicate a departure from the
assumption of homogeneous mixing.

3.1 Creating plots

The data obtained from the simulation code written in C was saved in data files. These
data files were then processed using Python, which was also utilized for generating plots and
snapshots.

Due to the large number of realizations, the data processing was automated.

15



Péter Forgacs S-I-R Model on Active Matter

Chapter 4

Results

4.1 Low transmissibility regime

Figure 4.1a presents a snapshot of the system in the low transmissibility regime (β/µ =

0.5) without quenched disorder. The particles in motion exhibit a phase-separated state,
with a high density solid region and a low density gas region. As mentioned earlier, the
relationship between β/µ and the basic reproductive number is an emergent quantity.

Within a cluster, where the expected number of contacts is z = 6, an index case is
expected to generate approximately η = 3 secondary cases, indicating that the epidemic will
infect a fraction of the cluster. However, if the index case originates in the gas phase, its
expected number of contacts is likely z < 1, resulting in a reproductive number less than
one and limited transmissions between clusters.

Figure 4.1d depicts the system with randomly positioned obstacles (Nobs = 800). In this
configuration, the giant dense cluster is accompanied by several smaller persistent clusters
that have formed around certain obstacle locations. Due to the interconnectedness of particles
within each cluster, the assumption of homogeneous mixing breaks down for the epidemic
dynamics within these clusters.

Consequently, by manipulating the number and size of the clusters, we can investigate
various deviations from the mixing assumption. This allows us to explore a spectrum of
scenarios, ranging from a single large cluster with minimal mixing to situations with an
increased number of clusters and smaller sizes, leading to greater mixing.

Figures 4.1a–c demonstrate the temporal evolution of the susceptible (S), infected (I),
and recovered (R) particles in the obstacle-free system at time points t̃ = 0.2, 0.3, and
0.4. Conversely, Figures 4.1d–f display the evolution in the system that includes Nobs=800

obstacles. In both cases, when the infective particles come into contact with the giant cluster,
the disease propagates within the cluster. However, due to the low probability of transmission,
not all susceptible particles surrounding an infective particle become infected.

Consequently, there are still a finite number of susceptible particles remaining once the
epidemic concludes. The presence of quenched disorder, represented by black circles in Fig-
ures 4.1d–f, results in increased localized clustering in addition to the giant cluster. Since
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Figure 4.1: Illustrations showcasing the low transmissibility regime with and without
quenched disorder are presented. The progression of the epidemic in the system depicted
in Figure 1, with β/µ = 0.5, is observed at timepoints (a,d) t̃ = 0.2, (b,e) t̃ = 0.3, and (c,f)
t̃ = 0.4. The particles exhibit transitions between susceptible (S, yellow), infected (I, red),
and recovered (R, blue) states. Panels (a–c) represent the system without obstacles, while
panels (d–f) depict the system containing obstacles (Nobs = 800). It can be observed that
the presence of obstacles results in fewer infected particles at later time instances.

each cluster must be infected individually, this slows down the spread of the infection and
reduces the peak infective fraction (imax), as depicted in Figure 4.1e. For further insights
into the final epidemic size, refer to Ref. [24].

While the dynamics of infection spread show similarities in the presence and absence of
quenched disorder, there is a notable difference at t̃ = 0.4. In the system where obstacles
have fragmented the system into smaller clusters, the number of infected (I) particles is
significantly lower. This suggests that the epidemic has affected a smaller proportion of
particles in the system with quenched disorder.

Figure 4.2a displays the epidemic curves, representing the fractions of susceptible (s),
infected (i), and recovered (r) particles as a function of scaled time (t̃), for samples with
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Figure 4.2: Epidemic curves in the low transmissibility regime are displayed. In panel (a),
the fractions of susceptible (s, yellow), infected (i, red), and recovered (r, blue) particles
are plotted against rescaled time t̃ for the system shown in Figure 4.1 with β/µ = 0.5.
Solid lines represent samples without quenched disorder, while dashed lines correspond to
samples containing obstacles (Nobs = 800). At t̃ = 1.0, the epidemic concludes with i = 0.
The introduction of obstacles diminishes the peak value imax of the infective curve. In panel
(b), the corresponding η, which denotes the average number of S particles surrounding an I
particle, is depicted against t̃ for the sample without obstacles (blue) and the sample with
obstacles (orange). The inclusion of obstacles significantly reduces η throughout the entire
epidemic.

and without quenched disorder. It is worth noting that the presence of obstacles tends to
prolong the duration of the epidemic. However, by plotting the epidemic curves in terms of
scaled time, it becomes easier to compare samples with and without quenched disorder. The
curves exhibit the expected patterns characteristic of the classic S-I-R model.

In the absence of obstacles, at the end of the epidemic, a fraction s∞ = 0.41 of the
population remains uninfected, while r∞ = 1 − s∞ = 0.59 of the particles have recovered.
Conversely, when obstacles are present, a larger fraction s∞ = 0.51 of particles have avoided
infection. Moreover, the peak value imax in the infected fraction is significantly reduced
in magnitude when obstacles are introduced. This suggests that the system is sensitive to
the spatial heterogeneities introduced by the clustering resulting from the fixed obstacles.
Within this regime, localized mitigation protocols that target specific spatial regions could
be effective, as the presence of local quenched disorder can impede overall particle mobility
or diminish effective particle connectivity.

To further illustrate the impact of obstacles, Figure 4.2b portrays η, the average number
of susceptible (S) particles surrounding an infected (I) particle, as a function of scaled time.
In the sample containing obstacles, η consistently exhibits smaller values compared to the
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sample without obstacles.

4.2 High transmissibility regime

We now examine the scenario of high transmissibility with β/µ = 5.0. Figure 4.3a–c
depict the spatial progression of susceptible, infected, and recovered particles in the absence
of obstacles. The infection spreads through distinct fronts that propagate within the dense
region.

Conversely, Figure 4.3d–f illustrate the same evolution in the presence of obstacles (Nobs =

800). In this case, multiple dense clusters are observed, but each cluster exhibits a similar
pattern of front propagation for the infection.

y

(a) (d)

y

(b) (e)

x

y

(c)
x

(f)

Figure 4.3: Panels (a–c) depict the evolution of the epidemic in the high transmissibility
regime for systems without quenched disorder, with β/µ = 5.0. The snapshots correspond
to times t̃ = 0.1 (a,d), 0.2 (b,e), and 0.3 (c,f). The particles, representing susceptible (S),
infected (I), and recovered (R) states, transition between these states. Similarly, panels (d–f)
illustrate the evolution of the epidemic in the presence of obstacles (Nobs = 800). In both
cases, the epidemic propagates as a distinct front through the dense clusters.
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Figure 4.4a presents the epidemic curves for the high transmissibility system with
β/µ = 5.0, as shown in Figure 4.3. In this case, all particles become infected (s∞ = 0)
regardless of the presence of obstacles. The peak value imax is nearly identical for both sce-
narios. Interestingly, a noteworthy effect emerges: for t̃ < 0.175, the addition of obstacles
decreases the infected fraction i, while for t̃ > 0.185, the presence of obstacles increases i.
This phenomenon cannot be attributed solely to a change in the epidemic duration, as the
curves are plotted in reduced time. Instead, it signifies a shift in the spatial propagation
of the infection, which will be further addressed in Figures 4.6 and 4.7. The crossover in
behavior occurs after the initial large infection front has fully propagated through either
the giant cluster or all smaller clusters in the samples with quenched disorder. In Figure
4.4b, we plot the corresponding η versus t̃, which remains largely unaffected by the inclusion
of obstacles. These findings indicate that under high transmissibility, the system exhibits
reduced sensitivity to spatial disorder, aligning with the behavior observed in the mean field
limit.
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Figure 4.4: In panel (a), we present the epidemic curves for the high transmissibility regime.
The curves represent the fractions of susceptible (s), infected (i), and recovered (r) particles
as a function of reduced time (t̃) for the system shown in Figure 4.3 with β/µ = 5.0. The
solid lines correspond to samples without quenched disorder, while the dashed lines represent
samples containing obstacles. In this scenario, all particles become infected, resulting in s∞ =
0. Furthermore, panel (b) displays the average number of susceptible particles surrounding
an infected particle, denoted as η, as a function of reduced time (t̃). The blue curve represents
the sample without obstacles, while the orange curve represents the sample with obstacles.
In this case, there is minimal difference in η between the two scenarios.

The epidemic curves and plots of η(t) for all other β/µ can be viewed in Appendix A.
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4.3 Duration of epidemic

Our simulations have revealed a significant level of stochasticity in the behavior of the
epidemic. The duration of the epidemic, denoted as td, can vary greatly depending on the
randomly chosen locations of the index cases. In some cases, the outbreak fails to establish
and extinguishes without significantly affecting a substantial fraction of the particles.

To demonstrate this variability, we present the distribution P (td) of the epidemics mea-
sured in simulation time steps, considering both scenarios with and without obstacles. In
Figure 4.5, we specifically focus on the low transmissibility regime, examining cases with
β/µ = 0.4, 0.45, 0.5, 0.6, and 1.0. In this regime, the distribution exhibits a bimodal nature,
indicating a clear distinction between small td values associated with failed outbreaks that
do not impact a significant fraction of the particles, and larger td values corresponding to
successful epidemics involving a substantial fraction of the population. This behavior aligns
with observations from other studies [37].

The introduction of quenched disorder in this regime amplifies the likelihood of outbreak
failure while also increasing the average duration of successful epidemics. However, in the
high transmissibility regime, represented by β/µ = 2.0 and 3.0 in Figures 4.5f and 4.5g,
respectively, the distribution P (td) becomes unimodal. Here, all outbreaks lead to successful
epidemics, and the presence or absence of quenched disorder no longer exhibits a significant
difference in the distribution.

4.4 Ability of I to contact S

We can differentiate between the two regimes of behavior by examining features in η,
specifically by comparing the values of η in samples with and without quenched disorder.
In Figure 4.6a, we present a plot of η against t̃′, where the time scale t̃′ represents the
point at which the number of recovered individuals has reached 95% of its maximum value,
r(t̃′ = 1.0) = 0.95r∞ = 0.95(1 − s∞). By using this time scale, we exclude the stochastic
behavior observed at late times when only a few remaining infectives are recovering.

At t̃′ = 0, η is consistently high since the initial seed I particles are surrounded exclusively
by susceptible particles. As the epidemic spreads, the average number of susceptible (S)
particles around infected (I) particles decreases. When β/µ ≤ 1.5, the curves exhibit a
monotonic decrease, reaching a saturation value ranging from η = 2.5 to η = 3.25. Samples
with obstacles consistently display lower values of η compared to those without obstacles.

For β/µ > 1.5, the epidemic spreads in the form of a front, which is evident as a local dip
in η centered around t̃′ = 0.2. As the front rapidly moves through the largest cluster, most of
the infected particles become surrounded by other infected particles behind the expanding
front, leaving only those at the front edge adjacent to susceptible particles (S). This results
in a decrease in the value of η. Once the front has passed through the cluster, the mobility
of the particles brings more susceptible particles from the gas phase into contact with the
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Figure 4.5: The durations of epidemics in the presence and absence of quenched disorder are
examined in the low and high transmissibility regimes. The distribution P (td) of epidemic
durations, measured in simulation time steps, is illustrated for 1000 realizations. The blue
curves represent systems without obstacles, while the orange curves represent systems with
obstacles. The low transmissibility regime is characterized by β/µ= (a) 0.4, (b) 0.45, (c) 0.5,
(d) 0.6, and (e) 1.0, while the high transmissibility regime is denoted by β/µ= (f) 2.0 and
(g) 3.0. In the low transmissibility regime, the distributions (a-e) exhibit a bimodal nature,
and the inclusion of quenched disorder leads to an increase in the number of failed outbreaks
and prolongs the duration of successful epidemics. Conversely, in the high transmissibility
regime (f,g), failed outbreaks are absent, and the impact of quenched disorder is significantly
diminished.

remaining infected particles (I), leading to a partial recovery of η before it saturates at a low
value between η = 1.5 and η = 2.0.

In Figure 4.6b, we present a plot of the difference, ∆η = ηobs=800−ηobs=0, which represents
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Figure 4.6: Measurement of the contact between infected (I) and susceptible (S) particles,
and how it is influenced by the introduction of quenched disorder, is examined. (a) The plot
shows η versus t̃′ for varied β/µ values. The thin lines represent samples without obstacles,
while the thick lines represent samples with obstacles. In cases where β/µ is large, a local
minimum in η is observed around t̃′ = 0.1 due to the formation of a propagating front. (b)
The difference, ∆η, between the values of η in samples with and without disorder is plotted
against t̃′. For β/µ ≤ 1.5, where no front propagation occurs, the addition of quenched
disorder consistently reduces the value of η. However, for β/µ > 1.5, when a front emerges,
∆η drops below zero after the front has passed, indicating an enhancement in the infection
rate when quenched disorder is present.

the change in η between samples with and without quenched disorder from Figure 4.6a.
When β/µ ≤ 1.5, ∆η reaches a constant negative value of approximately ∆η ≈ −0.25. This
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indicates that the presence of quenched disorder consistently reduces the effectiveness of
epidemic spread in this regime.

Once the system enters the front propagation regime for β/µ > 1.5, ∆η exhibits a
nonmonotonic behavior with local peaks and dips. For t̃′ < 0.4, there is a dip when the front
is passing through the largest clusters. In this case, ∆η is negative, suggesting that quenched
disorder slows down the front to some extent. Beyond the minimum of the dip, ∆η increases
and becomes positive, indicating that the addition of quenched disorder actually enhances
the effectiveness of epidemic spread. This observation aligns with Figure 4.4a, where the
presence of quenched disorder reduces the number of infected individuals (i) for t̃′ < 0.175

but slightly increases it for t̃′ > 0.175. This indicates that disorder can accelerate the infection
at later times.

The enhancement of the epidemic occurs after the largest cluster has become fully in-
fected, and some infected particles break away from the cluster and enter the gas phase.
Within the gas phase, the quenched disorder induces the formation of smaller localized
clusters, as depicted in Figure 2.1. These smaller clusters, upon contact with an infective,
undergo the same rapid front propagation as the initial wave of infection. In contrast, when
quenched disorder is absent, there are no smaller clusters, and the infection must propagate
through the gas phase, infecting the remaining susceptible (S) particles one by one, which is
an inefficient process.

4.5 Epidemic phase diagram

Based on the observed characteristics in Figure 4.6, we can create a phase diagram to
illustrate the system’s behavior as a function of β/µ versus t̃′. This phase diagram is shown
in Figure 4.7. When β/µ > 1.5, the entire system becomes infected (s∞ = 0), and the
initial spread of the infection occurs through front propagation. In the regime marked as
FP (front propagation), the infection spreads via a front through the largest cluster. The
addition of quenched disorder in this regime can slow down the front propagation but does
not halt it. Once the front has passed through the entire largest cluster, the system enters
the CP (secondary cluster propagation) regime, where secondary clusters start exhibiting
front propagation. In this regime, the presence of quenched disorder can enhance the spread
of the infection by increasing the number of secondary clusters. At larger values of t̃′, all
clusters have been infected, and the epidemic progresses through the gas phase. This regime
is referred to as Diff (diffusive), where there is minimal difference between systems with and
without quenched disorder.

For β/µ ≤ 1.5, which corresponds to the low transmissibility regime (marked as LT), the
infection spreads more uniformly, as depicted in Figure 4.1. In this regime, s∞ > 0, meaning
not all particles are infected by the end of the epidemic. The addition of quenched disorder
consistently reduces the maximum number of infected particles (imax) and increases s∞.

It is worth noting that the phase boundaries in the phase diagram may depend on factors
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Figure 4.7: The phase diagram illustrates the evolution of the epidemic in both low and high
transmissibility regimes. It is presented as a function of transmissibility β/µ versus reduced
time t̃′. In the low transmissibility (LT) regime, characterized by β/µ ≤ 1.5, the system
exhibits s∞ > 0, indicating that a fraction of susceptible particles remains unaffected by
the epidemic. The presence of obstacles has a significant impact on the propagation of the
epidemic in this regime. The front propagation phase (FP) occurs in the high transmissibil-
ity regime, where the infection spreads rapidly through the system. This phase is marked
by efficient transmission and a prominent propagating front. The addition of obstacles may
still influence the spread of the infection, but to a lesser extent compared to the low trans-
missibility regime. In the secondary cluster phase (CP), obstacles can actually enhance the
spread of the infection. This phase is characterized by the formation of secondary clusters
that contribute to the overall epidemic propagation. The obstacles facilitate the clustering
effect, leading to increased infection transmission. The diffusive regime (Diff) is character-
ized by a more uniform and diffusive spread of the infection. In this regime, the presence of
obstacles has minimal impact on the epidemic spread.

such as the amount of quenched disorder and the activity level of the particles.

4.6 Effect of changing quenched disorder density

To examine the resilience of our findings to variations in the density of quenched disorder
sites, we present in Figures 4.8a–g the distribution P (td) of epidemic durations in a sample
with Nobs = 1600 obstacles. In the low transmissibility regime, the presence of obstacles
further suppresses successful outbreaks as the obstacle density increases. This occurs because
the formation of large clusters, observed at lower obstacle densities, gets disrupted when
the obstacle density rises, as demonstrated in Figure 4.8i. On the other hand, in the high
transmissibility regime characterized by β/µ ≥ 2, even with a higher number of quenched
disorder sites, the impact on outbreak duration remains negligible. Therefore, our observation
that quenched disorder loses significance in the context of high transmissibility remains
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Figure 4.8: Impact of varying quenched disorder density can be observed in the following
manner. Panels (a–g) present the distribution P (td) of epidemic duration td in simulation
time steps, encompassing 200 realizations. Blue curves represent systems without obstacles,
while orange curves represent systems with Nobs = 1600 obstacles. The scenarios covered
include both low and high transmissibility regimes: β/µ = (a) 0.4, (b) 0.45, (c) 0.5, (d) 0.6,
(e) 1.0, (f) 2.0, and (g) 3.0. Similar to the case with fewer obstacles, there are no failed
outbreaks in the high transmissibility regime, leading to a notable reduction in the effect of
quenched disorder. Panel (h) displays the relative fraction Erel of successful outbreaks in the
presence of quenched disorder compared to the absence of quenched disorder, specifically
for systems with different numbers of obstacles Nobs at β/µ = 0.5. The dashed line in
panel (c) indicates the threshold used to distinguish failed and successful outbreaks when
calculating Erel. In panel (i), an image snapshot of the epidemic is presented for a system
with Nobs = 1600 and β/µ = 0.5 at the peak of the infection. The susceptible (S) particles
are depicted in yellow, infected (I) particles in red, and recovered (R) particles in blue. The
increased density of quenched disorder sites has caused the system to fragment into numerous
smaller clusters.

consistent as the number of obstacles increases.

To quantify the influence of quenched disorder in the low transmissibility regime with
β/µ = 0.5, we measure the total number of outbreaks (Es) within the successful window.
The successful window consists of outbreaks with durations (td) that exceed the threshold
indicated by the red dashed line in Figure 4.8c. By comparing the number of outbreaks
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in samples with quenched disorder (Eobs
s ) to the number of outbreaks in samples without

quenched disorder (E0
s ), we calculate the relative fraction of successful outbreaks, denoted

as Erel = Eobs
s /E0

s . Figure 4.8h illustrates the relationship between Erel and Nobs, revealing
that as the density of obstacles (Nobs) increases, there is a greater suppression of successful
outbreaks in comparison to the disorder-free system. It is worth noting that if the obstacle
density becomes so high that the obstacles begin to percolate across the sample, causing
it to split into disconnected regions, Erel could potentially drop to zero. However, further
investigation into this regime will be addressed in future research.

The duration of epidemics for Nobs = 400 and 1200 can be viewed in Appendix B.
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Conclusions

Our model suggests that active matter systems offer a versatile approach to studying
various epidemic behaviors. One such system is active colloids, where the activity of individ-
ual particles can be controlled using optical rastering techniques. These systems have been
utilized in experiments to replicate group formation, simulate visual perception mobility,
and generate collective behaviors like quorum sensing [1, 19].

To implement an S-I-R model, individual active colloids can be tracked and labeled based
on their infective state, and when they interact with other colloids, there can be a probability
of transmitting the infection to susceptible ones. This can be achieved in a motility-induced
phase-separated regime or a diffusive regime with varying β/µ. The experiments can be
repeated multiple times to obtain average behavior. In a given sample, certain colloids can
remain inactive and be considered as passive or obstacle particles, or physical obstacles can
be introduced on the substrate.

Moreover, additional rules can be incorporated, such as hyperactive particles acting as
superspreaders or potential mitigation effects. This approach has the potential to position
active matter as a tabletop experimental system for modeling epidemics. Our findings high-
light that active matter can serve as a simulation tool for studying epidemics in a system
that can be easily tuned between states sensitive and insensitive to spatial disorder.

In summary, we have demonstrated the utilization of an active matter system consisting
of self-propelled particles to simulate spatial heterogeneity within an S-I-R epidemic spread-
ing model. The inherent clustering behavior of the active particles emerges naturally in the
motility-induced phase-separated regime. In the low transmissibility regime, characterized by
percolative epidemic spread, the system exhibits sensitivity to the introduction of quenched
disorder. This leads to an increased likelihood of failed outbreaks and longer average du-
rations of successful epidemics. Consequently, the classical mixing hypothesis of traditional
S-I-R models is no longer applicable in this regime. On the other hand, in the high trans-
missibility regime, where all particles eventually get infected and the epidemic propagates
through well-defined fronts, the addition of quenched disorder initially slows down the spread
by impeding the propagation of the initial front. However, at later stages, the presence of
quenched disorder facilitates more efficient epidemic spreading due to the emergence of nu-
merous small clusters in the gas phase. Our findings highlight the impact of spatial disorder
on epidemic spread across both high and low transmissibility regimes.

The proposed system can be potentially realized experimentally using light-activated
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colloidal particles controlled by specific feedback rules to mimic the S-I-R model. These
results suggest that active matter systems offer a promising avenue for conducting table-top
epidemic experiments.
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Appendix A

Epidemic curves
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(a) Epidemic curves in the low transmissibil-
ity regime (β/µ = 0.40).
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(b) Epidemic curves in the low transmissibil-
ity regime (β/µ = 0.45).
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(c) Epidemic curves in the low transmissibil-
ity regime (β/µ = 0.60).
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(d) Epidemic curves in the low transmissibil-
ity regime (β/µ = 0.80).
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(e) Epidemic curves in the low transmissibil-
ity regime (β/µ = 1.00).
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(f) Epidemic curves in the transitional trans-
missibility regime (β/µ = 1.50).
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(g) Epidemic curves in the high transmissi-
bility regime (β/µ = 2.00).

0.0

0.2

0.4

0.6

0.8

1.0
s,

i,
r

(a)

s(t)
i(t)
r(t)

0.0 0.2 0.4 0.6 0.8 1.0
t

1

2

3

4

(b)

Nobs
0
800

(h) Epidemic curves in the high transmissi-
bility regime (β/µ = 2.50).
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(i) Epidemic curves in the high transmissibil-
ity regime (β/µ = 3.00).
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(j) Epidemic curves in the high transmissibil-
ity regime (β/µ = 4.00).

Figure A.1: (a) The system’s evolution of s(t̃) (represented in yellow), i(t̃) (represented in
red), and r(t̃) (represented in blue) is depicted for a system. Solid lines represent samples
without quenched disorder, while dashed lines correspond to samples containing obstacles
(Nobs = 800). (b) The corresponding η(t̃) values are shown in blue for systems without
obstacles and in orange for systems with obstacles.
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Appendix B

Duration of epidemic for different
obstacle densities
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Figure B.1: The durations of epidemics in the presence and absence of quenched disorder are
examined in the low and high transmissibility regimes. The distribution P (td) of epidemic
durations, measured in simulation time steps, is illustrated for 200 realizations. The blue
curves represent systems without obstacles, while the orange curves represent systems with
obstacles.
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