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Abstract 

This thesis introduces a novel analytical approach to enhance the clinical interpretation of serum 

Surface-Enhanced Raman Scattering (SERS) spectra for cancer screening. SERS liquid biopsy has 

gained significant attention in cancer screening due to its ease of use, speed, and low sensitivity. 

However, the analysis of SERS spectra is often more mathematical than spectrally meaningful, 

which diminishes the trust medical doctors place in classification results, making cancer screening 

with SERS seem like a black box. Thus, this thesis aims to develop an alternative to the Principal 

Component Analysis (PCA) dimensionality reduction technique, specifically designed based on 

the molecular signatures of metabolites known to adsorb on silver surfaces and produce SERS 

signals from serum. 

A thorough theoretical overview of SERS and its use in biomedical diagnostics is given in Chapter 

1. Chapter 2 details the development of a model that focuses on important purine metabolites: uric 

acid, hypoxanthine, xanthine, urea, and creatinine, in order to reduce dimensionality and increase 

specificity in cancer classification. To support the development of machine learning classifiers, 

this model uses Gram-Schmidt orthogonalization to separate metabolite contributions. Chapter 3 

discusses the application of this model across three cancer datasets: colorectal, gastrointestinal, 

and prostate cancers. The results demonstrate notable improvements in prostate cancer 

classification compared to PCA-based methods, while for colorectal and gastrointestinal cancer, 

we observed a decrease in classification accuracy. Although PCA performed better for these two 

datasets, it is possible that contaminants rather than real sample signals were used for the 

classification, as shown by an analysis of the loading plot of the used PCs, which showed the 

presence of Crystal Violet, a known contaminant in SERS spectroscopy. The results highlight the 

potential of the model to improve SERS-based diagnostics by guaranteeing that classifications are 

made exclusively on the basis of purine metabolites. In order to further improve cancer screening 

procedures, future research directions include broadening the model application, incorporating 

cutting-edge machine learning strategies, and investigating unknown spectral contributors. 
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Introduction  

SERS has a great potential to change the field of liquid biopsy diagnostics by providing sensitive 

and specific detection of biomolecules, especially in the field of cancer screening, where lots of 

studies showed performance higher than 80%. However, a major obstacle is the direct 

assignment of the molecule that is responsible for the prediction of the patients class. In order to 

address this challenge, this thesis proposes a novel approach to decompose SERS spectra, 

enabling a more precise and meaningful interpretation of the data. The original contribution of 

this work is the development and optimization of a decomposition model that effectively reduces 

the SERS spectra’s dimensionality while retaining the chemical information related to purine 

metabolites. By incorporating the characteristic bands for each metabolite and by using 

orthogonalization, the model's performance demonstrates similar or improved classification 

accuracy when compared to traditional PCA-based methods. 

The thesis is divided into three main chapters. A thorough overview of the theoretical 

underpinnings of SERS technology and its application in biochemical analysis is given in the 

first chapter. It covers the fundamentals of Raman scattering SERS enhancement mechanisms 

and the role purine metabolites play in biological systems. The chapter also discusses previous 

studies and methods related to SERS-based metabolite detection, which helps set the scene for 

the development of the proposed model. The second chapter details the materials and 

experimental methods used in the study. It explains how to prepare SERS substrates, get SERS 

spectra from serum samples and pure metabolites, and preprocess the spectral data. The 

algorithmic approach for spectral decomposition, which makes use of constraints and 

orthogonalization techniques, is also covered in this chapter. 

The third chapter presents the results of the thesis and provides a detailed discussion of the 

findings. The decomposition model is first validated on pure metabolite spectra, and then it is 

applied to serum SERS spectra from cancer patients. By contrasting the classification accuracy, 

the suggested model's performance is evaluated against conventional PCA-based techniques. The 

implications of the findings for SERS-based diagnostics are also covered in this chapter, along 

with a chemical interpretation of the decomposed variables. A synopsis of the key findings and 

the significance of the findings are included in the thesis conclusion. It draws attention to the 

proposed model's potential impact on metabolite quantification and the advancement of SERS-

based diagnostics. The dissertation concludes with two sections: an extensive bibliography that 

includes a list of all the references cited in the thesis and acknowledgments, which are used to 

thank people who contributed to the research. 
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Chapter 1: Theoretical background 

1.1 Surface-Enhanced Raman Scattering (SERS) and its clinical 

applications 

The molecules in all matter possess unequal charge distributions along their chemical bonds, 

resulting in the formation of dipoles. When exposed to light, these charge distributions can be 

altered, inducing or modifying the molecular dipole moment and generating oscillating 

electromagnetic fields [1]. This type of interaction provides qualitative and quantitative 

information on molecule composition [2]. 

Molecules can remain transparent to light or interact with photons via absorption or scattering 

[1]. Absorption occurs when the photon energy matches the energy difference between the 

electronic, vibrational, and rotational states of the molecule, whereas scattering does not require 

a resonance condition [3]. Scattering efficiency is proportional to the incident light frequency 

and the molecule's cross-section, with higher frequencies increasing the scattering probability 

[4]. 

Raman spectroscopy uses a single wavelength of incident radiation and collects scattered 

photons. Incident photons distort the molecule's electron cloud, altering its polarizability, which 

is required for observing the Raman effect [2]. Polarizability refers to the energy needed to 

distort an electron cloud with an electromagnetic wave, resulting in an induced dipole moment µ.  

The induced dipole moment consists of three components: Rayleigh radiation, Stokes scattering, 

and anti-Stokes scattering. While the majority of incident photons scatter elastically (Rayleigh 

radiation), a few lose energy to molecular vibrations (Stokes scattering) and gain energy (anti-

Stokes scattering). It is important to note that only around one in every million photons is 

inelastically scattered, making Raman spectroscopy a low-sensitivity method [2]. However, 

sensitivity can be enhanced by using techniques such as Surface-Enhanced Raman Scattering 

(SERS) [5]. 

Raman spectroscopy, especially its advanced method, Surface-Enhanced Raman Spectroscopy 

(SERS), has garnered considerable interest in the medical field due to its high sensitivity and 

versatility. This interest stems from SERS's potential to serve as an alternative to current 

diagnostic tools, especially for cancer detection. Among the various SERS-based diagnostic 

approaches, SERS liquid biopsy has emerged as the most favored option because it is non- or 
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minimally invasive, requires low sample volumes, and offers quicker turnaround times. 

Moreover, technological advancements have made spectrometers more accessible and compact, 

making SERS feasible for practical application in real-world hospital settings [6]. 

However, the translation of surface-enhanced Raman scattering (SERS) from the optical bench 

to the clinical environment presents several challenges. These include a lack of understanding of 

clinical pathways, the absence of standard operating procedures (SOPs), regulatory hurdles, and 

a limited number of samples in proof-of-principle studies. Nevertheless, among the biofluids 

analyzed using SERS, urine is the preferred choice. It has been demonstrated that the 

effectiveness of SERS urine biopsy as a screening tool applies to various cancers [7, 8, 9, 10]. In 

addition to screening, SERS urine biopsy shows promise as a support tool for reducing 

unnecessary biopsies in individuals with clinically suspected cancer. 

1.2 Detection of cancer using SERS liquid biopsy: purine metabolites 

SERS liquid biopsy has potential in medical diagnostics due to its ability to detect purine 

metabolites, which are indicative of cellular turnover rate, inflammation, and oxidative stress, all 

of which are disrupted in numerous diseases ranging from cancer to autoimmune disorders. 

Purine metabolites are derived from the breakdown of purine nitrogen bases like adenine and 

guanine and proceed through a metabolic pathway involving inosine, hypoxanthine, xanthine, 

and ultimately uric acid (Figure 1.1). In contrast, pyrimidine bases such as thymine, cytosine, 

and uracil are metabolized to simpler compounds like water and carbon dioxide. 

 

Figure 1.1: A simplified diagram of the purine metabolism decomposition 
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Numerous medical conditions are associated with elevated purine metabolite levels [11]. For 

example, cancer patients often show increased uric acid and hypoxanthine levels compared to 

healthy individuals due to accelerated cellular turnover [11]. However, the biomedical 

implications of purine metabolism are nuanced, as elevated uric acid levels can be detrimental in 

conditions like gout, chronic kidney disease, or metabolic syndrome [12, 13, 14], yet potentially 

protective against diseases such as Parkinson’s, multiple sclerosis, and Alzheimer’s [15, 16]. 

Beyond uric acid, variations in xanthine and hypoxanthine levels are also linked to specific 

diseases. Studies have indicated lower serum levels of xanthine and hypoxanthine in patients 

with colorectal cancer and lower urinary hypoxanthine in those with non-Hodgkin lymphoma 

[17, 18]. Moreover, the balance between these purine metabolites is crucial; reduced activity of 

xanthine oxidoreductase in cancer leads to imbalances among hypoxanthine, xanthine, and uric 

acid [19]. 

While the precise relationship between purine metabolism and certain diseases is not fully 

understood, these findings underscore the potential of methods like SERS liquid biopsy to 

identify purine metabolite imbalances, aiding in the diagnosis of various diseases. 

1.3 Methods for analyzing SERS spectra: machine-learning (ML) 

Traditional analytical techniques no longer meet current demands. SERS enables the detection of 

biofluid metabolites that adsorb to metal nanoparticles, while the free, bulk molecules remain 

undetected in the SERS spectrum  [20, 21]. From the approximately 4000 metabolites typically 

present in human serum [22], only those with a high affinity for the metal substrate are detected 

by SERS, with purine metabolites being the most prominent [23, 24]. Therefore, the SERS 

spectra of biofluids will be dominated by purine metabolite bands, with other contributions often 

obscured by overlapping bands or high noise. Due to this, using SERS in clinical applications 

and as a diagnosis technique is of high interest because, as mentioned in the previous chapter, 

purine metabolites are linked to a variety of diseases. However, some unidentified metabolites 

can also contribute to the SERS spectrum, and given the large size of SERS spectroscopy 

datasets, visual analysis is impractical. But precise spectral signature assignment is not necessary 

when employing machine learning (ML) algorithms for classification based on spectral shapes 

[25], and ML models can be used in order to process these signals effectively. Consequently, in 

medical diagnostics, SERS functions as a “black box” system where spectra serve as inputs and 

ML algorithms classify them without disclosing the contributing spectral features. However, for 

the ML approach to be trustworthy, a medical and chemical interpretation is needed. 
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ML can be applied to various tasks, but this thesis focuses on ML algorithms' clustering and 

classification applications. ML algorithms learn from a training dataset to perform well on a 

new, unseen test set. The task, typically a classification problem, is evaluated by performance 

metrics. ML classifiers learn from the training set by extracting relevant features and thresholds 

and applying this experience to new datasets [26]. 

The performance of ML models can be adjusted by altering error thresholds, discrimination 

functions, or model hyperparameters. Hyperparameters, which control ML model behavior, are 

optimized through a trial-and-error process. Performance metrics are determined using a 

validation set, distinct from the training and test sets [27]. 

ML involves three key steps: gaining experience from a training set, task-specific 

hyperparameter tuning analyzed by a validation set, and evaluating the model's classification 

accuracy on a test set. Training and test sets should be independent yet identically distributed 

[27]. For classification models, different samples should be used for training and testing, 

maintaining proportional label distribution. Validation and test sets should constitute 10–40% of 

the training set samples [28]. When sample numbers are small, cross-validation, where the 

dataset is repeatedly split into training and validation sets, is an alternative. ML algorithms are 

optimized on the training set, with hyperparameters adjusted to minimize training error or 

maximize classification accuracy. Optimal hyperparameters are determined outside the learning 

algorithm using another dataset [27]. 

Significant discrepancies between training and test errors indicate underfitting (high training 

error) or overfitting (low training error). Adjusting hyperparameters or selecting optimal models 

can mitigate these risks. ML algorithms are categorized as unsupervised or supervised based on 

the information available during the learning phase. Unsupervised algorithms learn from feature-

only datasets, analyzing probability distributions or clustering tendencies, while supervised 

algorithms have access to datasets with features and associated labels or targets. Unsupervised 

algorithms, like Principal Component Analysis (PCA), which will be discussed later, are more 

reliable than supervised ones. Supervised algorithms extract relevant features to discriminate 

labels or targets, applying this experience to predict labels or targets on new datasets [29]. 

ML algorithms are also classified as parametric or nonparametric based on their mathematical 

approach. Parametric models use a finite parameter vector to describe a function based on input 

features, whereas nonparametric models use algorithms based on all possible probability 
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distributions, not directly correlated with input features [27]. ML algorithm performance is 

generally evaluated by overall classification accuracy, F1 score, precision, recall, and specificity. 

Precision is the ratio of true positive outputs to the sum of true positive and false positive results. 

Recall, or sensitivity, is the ratio of true positive results to the sum of true positive and false 

negative results. Specificity is the ratio of true negatives to the sum of true negatives and false 

negatives. The F1 score is the harmonic mean of precision and recall [29]. A receiver operating 

characteristic curve, based on recall and specificity, provides an overview of the ML model's 

classification performance. The area under the curve (AUC) shows the trade-off between recall 

and specificity. The most reliable performance analysis involves constructing a confusion matrix, 

which includes the exact numbers of false and true negatives and positives [29]. 

In the next subsections, the different ML models used in this thesis will be described. 

1.3.1 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a foundational multivariate analysis technique. It is an 

unsupervised method that reduces the number of variables while preserving as much variation as 

possible from the original dataset. This reduction is achieved by calculating principal 

components (PCs), which are uncorrelated vectors that maximize the variance in the dataset [30]. 

Each PC is a linear combination of the original variables, with coefficients indicating their 

significance and relationships [31]. 

PCA's main advantage is dimensionality reduction while maintaining the ability to interpret the 

data in the context of the original variables [32]. When using PCA, it's important to note that it 

operates as an unsupervised technique, meaning it does not consider class labels in the dataset. 

The selection of PCs is based purely on statistical criteria, specifically maximizing variance 

across the entire dataset. PCs are prioritized based on the amount of variance they explain; those 

explaining greater variance are considered more significant than those explaining less. However, 

lower variance data might erroneously be disregarded as "noise," potentially overlooking 

valuable information. In classification tasks, the features that maximize discrimination between 

groups may differ from those that maximize overall dataset variance [30]. Thus, PCA's 

application may inadvertently eliminate features crucial for discrimination while retaining those 

with a broader data spread. 
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1.3.2 Gaussian Naive Bayes (GNB) 

Gaussian Naïve Bayes (GNB) algorithms leverage Bayes' theorem, assuming feature 

independence, to perform probabilistic classification effectively. This method calculates the 

likelihood of an event based on prior knowledge, adjusting probabilities as new evidence is 

introduced [28]. GNB evaluates the probability of each feature given a hypothesis (target class), 

multiplying these probabilities to determine the likelihood of the hypothesis given the observed 

data. The hypothesis with the highest probability is chosen as the predicted output. GNB 

assumes feature independence and a normal distribution of data, making it straightforward and 

quick for classification tasks. Unlike many classifiers, GNB requires no hyperparameter tuning, 

simplifying its application in various contexts [33]. 

1.3.3 Support Vector Machine (SVM) 

Support Vector Machine (SVM) applies the concept of determining a boundary to divide classes, 

applicable in higher-dimensional spaces. SVM transforms features into points in an n-

dimensional space and selects a hyperplane that best divides the classes. If the classes are not 

linearly separable, a kernel function (e.g., linear or polynomial) transforms the data into a higher 

dimension where separation is possible [34]. 

In SVM, a hyperplane is sought in the transformed feature space to delineate classes, 

maximizing the margin to the nearest points of each class, known as support vectors. These 

critical samples are weighted to optimize the separation between classes [35], enhancing the 

model's resilience to outliers [36]. The selection of support vectors is automated based on 

boundary conditions, affecting SVM's sensitivity to sample size [37]. Choosing an appropriate 

kernel involves iterative testing, necessitating distinct training, validation, and test datasets or 

cross-validation. Hyperparameters such as cost (C), determining the trade-off between 

classification accuracy and margin width, and complexity bound (v), setting the error threshold, 

are crucial for SVM optimization. The optimal C value hinges on data noise and variance, 

inversely affecting the hyperplane's width [29].  

1.3.4 Logistic Regression (LR) 

Logistic regression (LR) is widely utilized in medical contexts for binary outcomes [38]. It 

models the probability of belonging to a class using a sigmoid function, which outputs values 

between 0 and 1 based on a weighted sum of input features. Predictions are made by comparing 

these probabilities: samples with a probability less than 0.5 are classified as class 0, and those 
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with a probability greater than 0.5 are classified as class 1. LR allows for the assessment of 

feature importance in outcome classification [28]. 

The training of an LR model involves determining optimal weights or coefficients for each 

feature through iterative testing of different combinations until the best fit is achieved. Once the 

optimal coefficients have been established, the conditional probabilities for each observation are 

computed, logged, and summed to produce predicted probabilities. LR captures the relationship 

between variables and outcomes via logarithmic odds, offering flexibility beyond simple linear 

relationships [28]. 

However, LR faces challenges with datasets containing a high number of features, where it can 

overfit. Regularization techniques are employed in such cases to penalize large coefficients. This 

regularization helps prevent overfitting by adjusting the model's complexity, thereby improving 

generalization to new data [28]. It's important to note that LR assumes input features are 

independent, which may not hold true in all practical scenarios. 

1.3.5 AdaBoost (Adaptive Boosting) 

AdaBoost (Adaptive Boosting) is a machine learning ensemble method that focuses on 

improving the classification accuracy of weak classifiers. It sequentially trains a series of 

classifiers, with each subsequent classifier giving more weight to incorrectly classified instances 

from the previous classifier. This adaptive weighting allows AdaBoost to prioritize difficult-to-

classify instances, thereby enhancing overall model performance. The final prediction is 

determined through a weighted majority vote of all classifiers, with higher weights assigned to 

more accurate classifiers [39]. 

AdaBoost is particularly effective in scenarios where datasets are complex and contain noise, as 

it can adjust to emphasize problematic instances during training. By iteratively reweighting data 

based on previous classifier performance, AdaBoost ensures that subsequent models focus more 

on previously misclassified instances, progressively improving the overall classification 

accuracy [40]. 

1.3.6 Random Forest (RF) 

Random Forest (RF) comprises multiple decision trees (DTs) that operate independently and 

collectively. Each tree analyzes a random subset of the dataset, extracting features that best 

distinguish between groups [23]. To elaborate, RF uses a technique called bagging, where each 
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tree is trained on a bootstrap sample (a random selection with replacement from the original 

data). This ensemble method aggregates predictions from all trees via voting. Hyperparameters 

such as the number of trees can be adjusted to control model complexity and performance, with 

more trees potentially enhancing training accuracy at the risk of overfitting [28]. 

RF offers robustness against outliers and noisy data, requiring minimal preprocessing [41]. It 

mitigates overfitting compared to individual decision trees [42] and avoids significant user 

intervention by being less sensitive to preprocessing variations [43]. However, RF benefits from 

large datasets for effective training and may encounter challenges when applied directly to 

spectral data due to the inherent structure of its decision trees [36, 38]. 

1.3.7  k-Nearest Neighbors (kNN) 

The k-Nearest Neighbors (kNN) model is a nonparametric learning approach that relies on the 

assumption that similar objects are located close to each other in the initial feature space. By 

calculating the distances to the k nearest neighbors, kNN determines the class closest to an 

unknown sample. These distances are not limited to Euclidean measures; various distance 

metrics can be employed depending on the task. Additionally, tuning the number of neighbors 

evaluated per sample is crucial for optimal performance. However, outliers can significantly 

impact the kNN model since all samples contribute to distance calculations [28].  

In summary, most machine learning classifiers assume feature independence, which may not 

hold true for datasets like vibrational spectra, where features describing the same vibrational 

band are highly correlated. Consequently, employing ML models directly on spectral features 

violates this assumption. Therefore, techniques such as PCA should precede ML classifiers to 

transform initial features into orthogonal ones. Careful selection of the reduction technique is 

essential to avoid losing critical information. For instance, in complex datasets containing 

predominantly noise with occasional significant signals, applying dimensionality reduction 

methods risks losing valuable signals [44]. 
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Chapter 2: Materials and methods 

2.1 Patient population and cancer datasets 

The study was conducted using three distinct datasets, each representing a different type of 

cancer: prostate cancer (29 patients and 22 controls), colorectal cancer (91 patients and 31 

controls), and gastrointestinal cancer (53 patients and 25 controls). Gastrointestinal cancers 

encompass a range of malignancies affecting the stomach, esophagus, and other parts of the 

digestive system. 

The cancers selected for analysis were chosen due to their prevalence as some of the top five 

most frequent cancers, as reported by the International Agency for Research on Cancer's (IARC) 

Global Cancer Observatory. In Romania, prostate cancer is the most frequently diagnosed cancer 

among males, with colorectal cancer ranking third and stomach cancer ranking fifth, as indicated 

in the 2022 Factsheet. Additionally, colorectal cancer ranks second among female cancers, 

making it the most prevalent cancer in both sexes. In 2022, there were 13,541 cases of colorectal 

cancer [45]. In terms of mortality, colorectal cancer holds the second position on the list, with a 

total of 7,381 deaths reported in Romania in 2022. Stomach cancer ranks sixth, and prostate 

cancer ranks seventh during the same year [45]. Lastly, it is essential to recognize that colorectal 

cancer ranks third globally in terms of prevalence, accounting for an estimated 10% of all cancer 

cases, and holds the position of the second leading cause of cancer-related fatalities worldwide 

[46]. 

2.2 Sample collection and preparation procedures 

The study involved analyzing existing data (SERS spectra) on serum samples from 

gastrointestinal and prostate cancer patients acquired using the same portable Raman 

spectrometer. Additionally, we collected new data from colorectal cancer patients. The latest 

study was approved by the Ethical Committee of the 1st Surgical Clinic, County Emergency 

Clinical Hospital in Cluj-Napoca, and informed consent was obtained from all patients enrolled 

in the study. Blood samples were collected in tubes that promote clotting and then stored at 4°C 

for one hour. This allows the serum to separate from the clot. Next, centrifugation (spinning) at 

high speed (2000xg) for 15 minutes further isolated the serum. The separated serum was then 

frozen at -80°C for preservation. Before analysis, the serum underwent protein removal using a 

precipitation technique. This involved mixing the serum with methanol (at a 1:9 ratio) and 
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centrifuging again at an even higher speed (5800xg) for 15 minutes. Finally, the protein-free 

liquid (supernatant) was collected for further testing. 

2.3 Silver nanoparticles synthesis 

Silver nanoparticles were synthesized by the reduction of silver nitrate using hydroxylamine 

hydrochloride (hya-AgNPs). To summarize the procedure, 17 mg of silver nitrate was dissolved 

in 90 mL of ultrapure water (Millipore). Simultaneously, 17 mg of hydroxylamine hydrochloride 

was dissolved in 8.8 mL of ultrapure water and mixed with 1.2 mL of 1% sodium hydroxide 

solution. The hydroxylamine solution was swiftly added to the silver nitrate solution under 

vigorous stirring, resulting in the rapid formation of colloidal Ag nanoparticles, evident from the 

solution's change in color to brown-grey. 

2.4 SERS spectra acquisition 

A portable Raman spectrometer (i-Raman BWS415-532H, BWTek) with an attached Raman 

video microsampling module (BAC151, BWTek) was used to acquire the SERS spectra of serum 

samples. 5 µl of deproteinized serum were mixed with 45 µl hya-AgNPs and 5x10-4 M 

Ca(NO3)2. 5 µl of the mixture were deposited onto a microscope glass slide, covered with 

aluminum foil. A 20x objective (N.A. 0.4) was used for focusing the 532 nm laser line (~6 mW 

power) on the sample. For each spectrum, we acquired four acquisitions, five seconds each.  

2.5 SERS spectra analysis  

2.5.1 Purine metabolites contributions to SERS spectra of serum 

As indicated in the previous chapter, the main contributors to the SERS spectra of serum are 

purine metabolites. Therefore, we know the correlation between the SERS bands and their 

meaning. To highlight the contributions of purine metabolites in the SERS spectrum of biofluids, 

the SERS spectra of uric acid, hypoxanthine, xanthine, urea and creatinine were acquired (Figure 

2.1). As observed in Figure 2.1. the major SERS bands in the serum SERS spectra overlap with 

the SERS bands characteristic to purine metabolites (533, 637, 811, 889, 1017, 1136, 1365 cm-1 

uric acid, 724 cm-1 hypoxanthine, 1206 cm-1 xanthine, 1518, 1575 cm-1 urea and 1616 cm-1 

creatinine). 
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Figure 2.1: SERS spectra of the purine metabolites: uric acid, hypoxanthine, xanthine, urea, and 

creatinine and mean SERS spectra of serum 

2.5.2 Dimensionality reduction of SERS spectral data 

Our first objective was to devise an effective method for reducing the dimensionality of SERS 

spectral data in order to be able to construct a classification approach centered on the purine 

metabolites. As a first step, we developed an algorithm in GNU Octave to decompose the serum 

SERS spectra onto relevant purine metabolites in three distinct scenarios:  

• Scenario 1: Decomposition of the serum SERS spectra onto relevant purine metabolites 

without imposing constraints; 

• Scenario 2: Decomposition of the serum SERS spectra onto relevant purine metabolites 

with constraints; 

• Scenario 3: Decomposition of the serum SERS spectra onto orthogonalized relevant 

purine metabolites. 
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In each scenario, the purine metabolites SERS spectra presented in Figure 2.1 were employed as 

separate metabolite vectors in the algorithm, and they will be subsequently referred to as 

metabolite vectors.  

The angle between two vectors reveals the similarity between them. To project one vector onto 

another, the dot product is calculated after each vector is normalized to the unit. In essence, 

spectra are vectors of different magnitudes, and calculating the dot product of the biofluid’s 

SERS spectra with a vector of a particular metabolite will later reveal the metabolite contribution 

to the biofluid SERS spectra. The SERS spectra projected onto the individual metabolite vectors 

lead to the score for every vector.  

In the last step, comparing composed and original spectra requires the inverse transformation of 

the result back into the initial space using a linear combination of the scores and metabolite 

vectors. The algorithms were tested and validated using a data set containing SERS spectra of 

the purine metabolites. This data set was projected onto the metabolite’s vectors, and the sample 

scores on the new feature were calculated. The scores obtained for the individual samples with 

respect to the various vectors represented the contribution of each metabolite in the SERS 

spectrum of the analyzed data set. 

After testing and validating the algorithms in the three aforementioned scenarios, we proceeded 

to apply the optimal algorithm (corresponding to the third scenario) to datasets that contained 

SERS spectra of serum from patients with prostate, colorectal, and gastrointestinal cancer and 

controls. 

2.6 Dimensionality reduction model (proposed model) creation and flow 

The usual pipeline for building a classification model is SERS acquisition, dimensionality 

reduction using PCA, and employing machine learning classifiers, with the ultimate goal of 

classifying cancer patients and controls using the SERS spectra of serum.  

Following this pipeline, for our proposed model, the serum SERS spectra were analyzed using 

Quasar-Orange software (Bioinformatics Laboratory of the University of Ljubljana) [47]. Next, 

we processed the serum SERS spectra by projecting them onto the relevant orthogonalized 

purine metabolites. In this way, we reduced the dimensionality of the data sets from thousands to 

five variables. Using the new variables, we build several Machine Learning (ML) techniques, 

including Naive Bayes, Support Vector Machine (SVM), Logistic Regression, AdaBoost, 

Random Forest, and k-nearest neighbors (kNN), to classify cancer patients and controls.  
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We compared the performance of our proposed model with a classic model using PCA, the well-

known method for dimensionality reduction of the data set, while retaining as much as possible 

of the variation in the data set. For both models, the hyperparameters were tuned to achieve the 

best classification accuracy and kept to allow the comparison. Figure 2.2 depicts the models 

created using Quasar-Orange software for prostate cancer. The same classification models were 

used for the other data sets.  

 

Figure 2.2: Classification models created using Quasar-Orange for prostate cancer. (Top): 

Classification model using PCA (Bottom): The proposed classification model based on the data 

set obtained by decomposing the serum SERS spectra onto the orthogonalized vectors of the 

purine metabolites 

2.7 Enhancing classification accuracy with residual analysis 

Following the analysis of the three datasets containing serum SERS spectra from patients with 

prostate, colorectal, and gastrointestinal cancer, along with the comparison of MLs classification 

accuracy between the proposed model and the PCA-based model, we wanted to further improve 

the classification accuracy. In order to achieve this objective, we investigated potential 

contributions that were not considered or were excluded during the decomposition of spectra 

onto relevant orthogonalized purine metabolites. 
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Therefore, we developed a code using GNU Octave to obtain residues for each cancer dataset. 

This was achieved by subtracting the recomposed spectra after decomposition onto relevant 

orthogonalized datasets from the initial dataset. Running the code on each dataset yielded the 

residual data and spectra. 

After obtaining and visualizing the residuals and their bands, we followed a similar approach to 

the previous section. Using Quasar-Orange and the same MLs, we built a residual-based model 

and a model using the initial datasets. This allowed for a comparison between the two models 

with comparable dataset sizes, ensuring a fair comparison. As for the previous models, the 

hyperparameters were adjusted to obtain the highest classification accuracy and kept for 

comparison. 

In Figure 2.3, we depict the initial data-based model and the residuals-based model created using 

Quasar-Orange for prostate cancer. The same classification models were used for the other 

datasets. 

 

Figure 2.3: Classification models created using Quasar-Orange for prostate cancer. (Top): 

Classification model using the initial data set (Bottom): The classification model based on the 

serum SERS of the residuals  
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Chapter 3: Results and discussion 

Our objective is to create a model for reducing the dimensionality of SERS spectra, 

incorporating the known correlations of SERS bands associated with detected purine 

metabolites. Given that purine metabolites are key contributors to serum SERS spectra, we map 

the SERS spectra onto the known spectra of each purine metabolite to derive a score indicating 

the 'concentration' of each metabolite in the samples. This approach aims to provide a chemical 

interpretation for SERS liquid biopsy diagnostics and enhance the quantitative detection of 

metabolites using SERS. 

3.1 Decomposition model optimization. Validation on SERS spectra of 

purine metabolites 

Initially, we evaluated the proposed scenarios using the SERS spectra of pure metabolites. We 

expected that when the SERS spectrum of a metabolite is decomposed onto itself, it would yield 

a score of 1, while its decomposition onto other metabolites would result in a score of 0. 

3.1.1 Scenario 1: No constraints imposed 

In the first scenario, the algorithm was utilized without imposing any constraints.  

Table 3.1: The dot product of the SERS spectra of uric acid, hypoxanthine, xanthine, urea, 

creatinine, and themselves for Scenario 1 

Actual/predicted Uric acid Hypoxanthine Xanthine Urea Creatinine 

Acid uric 1 0.43387 0.68439 0.59855 0.52086 

Hypoxanthine 0.43387 1 0.58484 0.66552 0.69032 

Xanthine 0.68439 0.58484 1 0.67809 0.61917 

Urea 0.59855 0.66552 0.67809 1 0.87424 

Creatinine 0.52086 0.69032 0.61917 0.87424 1 

The results obtained for this scenario do not achieve the desired goals (Table 3.1). We have 

expected the dot product between two different metabolites to be 0, and 1 for the dot product of 

the metabolite with itself. This discrepancy may be explained by the fact that the purine 

metabolites have many common bands with each other (vectors are not orthogonal). Figure 2.1 

highlights numerous regions in the spectra that have overlapping bands. Therefore, the model 

will have difficulties accurately recognizing each purine metabolite contribution to the spectra. 
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3.1.2 Scenario 2: Constraints imposed 

Considering the results for the first scenario, in this scenario we included constraints in the 

algorithm with the aim of achieving a better distinction of the purine metabolites in the spectra 

by the model. Therefore, we analyzed the purine metabolites SERS spectra and searched for 

isolated, characteristic bands for each of the metabolites. We identified and selected the 811 cm-1 

band for uric acid, the 1246 cm-1 band for xanthine, the 703 cm-1 band for urea, and the 681 cm-1 

band for creatinine. For hypoxanthine, an isolated band couldn’t be identified; however, the 724 

cm-1 band was selected as it’s the most intense. The SERS spectra of the purine metabolites with 

the selected bands are illustrated in Figure 3.1.  

 

Figure 3.1: SERS spectra of the purine metabolites with the selected bands for scenario 2 

In this second scenario, the algorithm will calculate the score of the SERS spectra on the 

metabolite’s vectors only if the selected bands of the respective metabolites are present in the 

spectra. Table 3.2 presents the results for Scenario 2. 

  



 

Cimpoeșu  

Angela-Georgiana 

Dimensionality reduction of SERS spectral data on biofluids: a methodological 

approach and a classification model for identifying cancer patients 

 

22 

Table 3.2: The dot product of the SERS spectra of uric acid, hypoxanthine, xanthine, urea, 

creatinine, and themselves for Scenario 2 

Actual/predicted Uric acid Hypoxanthine Xanthine Urea Creatinine 

Acid uric 1 0.43387 0 0 0 

Hypoxanthine 0 1 0 0 0.69032 

Xanthine 0 0 1 0.67809 0 

Urea 0 0 0 1 0 

Creatinine 0 0 0 0 1 

The results obtained for this scenario are improved. However, some overlapping between 

hypoxanthine and uric acid, as well as between xanthine and urea, cannot be avoided due to 

common bands. 

3.1.3 Scenario 3: Decomposition onto orthogonalized purine metabolites 

In the last scenario, a Python script was employed as a preprocessing step using the Gram-

Schmidt process in order to orthogonalize the purine metabolites vectors to uric acid SERS 

spectrum. The orthogonalized spectra are represented in Figure 3.2.  

 

Figure 3.2: SERS spectra of the orthogonalized purine metabolites to uric acid 
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The orthogonalization process ensured the elimination of correlations and overlaps between the 

metabolites and facilitated differentiation between them in the spectra. The algorithm was 

validated and tested using the SERS spectra of the orthogonalized purine metabolites. The results 

are included in Table 3.3. 

Table 3.3: The dot product of the SERS spectra of uric acid, hypoxanthine, xanthine, urea, 

creatinine, and themselves for Scenario 3 

Actual/predicted Uric acid Hypoxanthine Xanthine Urea Creatinine 

Acid uric 1 0 0 0 0 

Hypoxanthine 0 1 0 0 0 

Xanthine 0 0 1 0 0 

Urea 0 0 0 1 0 

Creatinine 0 0 0 0 1 

As it was expected in the beginning, the dot product between two different metabolites is 0, and 

1 for the dot product of the metabolite with itself. This scenario provided the desired results and 

offered the possibility of an accurate and distinct identification of purine metabolites, making it 

the optimal algorithm to be used in the analysis of serum SERS spectra from cancer patients in 

subsequent applications. 

3.2 Proposed model and PCA-based model classification accuracy on data 

sets consisting of SERS spectra of serum from patients with cancer 

As described in Chapter 2, after the testing and validation of the algorithms in the three 

aforementioned scenarios, the optimal algorithm (corresponding to the third scenario) was 

applied to the three studied datasets, obtaining new datasets reduced in dimensionality (five 

variables with chemical interpretation). 

The mean serum SERS spectra of the three analyzed data sets are depicted in Figure 3.3. As 

anticipated, upon analyzing the mean SERS spectra from cancer patients and control subjects, it 

is evident that the spectra are primarily composed of peaks originating from purine metabolites 

(see Figure 2.1).  
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Figure 3.3: Mean serum SERS spectra of patients with (a) prostate cancer and controls, (b) 

colorectal cancer and controls, and (c) gastrointestinal cancer and controls 

Using the decomposed variables (five variables for each dataset), we compared our proposed 

dimensionality reduction model to the classic model using PCA in terms of the resultant 

performance in the classification task. To ease the review of the results, in the subsequent tables, 

the cells are colored yellow if the classification accuracy has the same value for both models, 

green if the value for the classification accuracy is better for the proposed dimensionality 

reduction model, and red if the classification accuracy has decreased for the proposed model. 

3.2.1 Classification accuracy of classification models for prostate cancer 

The classification accuracy of the MLs employed on the purine metabolites score, and on the 

PCs score for prostate cancer can be found in Table 3.4. 

(b) 

(c) 

(a) 



 

Cimpoeșu  

Angela-Georgiana 

Dimensionality reduction of SERS spectral data on biofluids: a methodological 

approach and a classification model for identifying cancer patients 

 

25 

Table 3.4: Classification accuracy of the MLs for the PCA-based model and our proposed model 

for prostate cancer 

ML 

PCA-based model Proposed model 

Classification 

accuracy (%) 

Classification 

accuracy (%) 

Naïve Bayers 66.7 66.7 

SVM 

Linear 72.2 72.2 

Polynomial 66.7 66.7 

RBF 66.7 88.9 

Sigmoid 72.2 50 

Logic Regression 

(Regularization type: 

Lasso, Ridge, None) 

 

No balance class 

distribution (NBCD) 

 

Balance class 

distribution (BCD) 

Lasso, NBCD 61.1 61.1 

Lasso, BCD 66.7 66.7 

Ridge, NBCD 61.1 66.7 

Ridge, BCD 61.1 61.1 

None, NBCD 50 61.1 

None, BCD 50 50 

AdaBoost 38.9 61.1 

Random Forest 61.1 77.8 

kNN 

Metric: Euclidian 72.2 88.9 

Metric: Manhattan 83.3 88.9 

Metric: Chebyshev 83.3 77.8 

For prostate cancer, for the majority of ML, the results obtained on the purine metabolites score 

indicated consistency or even an improvement in classification accuracy compared to the PCA-

based model. 

3.2.2 Classification accuracy of classification models for colorectal cancer 

The classification accuracy of the MLs employed on the purine metabolites score, and on the 

PCs score for colorectal cancer is detailed in Table 3.5. 
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Table 3.5: Classification accuracy of the MLs for the PCA-based model and our proposed model 

for colorectal cancer 

ML 

PCA-based model Proposed model 

Classification 

accuracy (%) 

Classification 

accuracy (%) 

Naïve Bayers 82.1 74.4 

SVM 

Linear 79.5 74.4 

Polynomial 82.1 76.9 

RBF 89.7 76.9 

Sigmoid 76.9 76.9 

Logic Regression 

(Regularization type: 

Lasso, Ridge, None) 

 

No balance class 

distribution (NBCD) 

 

Balance class 

distribution (BCD) 

Lasso, NBCD 82.1 76.9 

Lasso, BCD 79.5 71.8 

Ridge, NBCD 84.6 76.9 

Ridge, BCD 84.6 76.9 

None, NBCD 79.5 71.8 

None, BCD 74.4 61.5 

AdaBoost 71.8 61.5 

Random Forest 87.2 87.2 

kNN 

Metric: Euclidian 92.3 84.6 

Metric: Manhattan 92.3 84.6 

Metric: Chebyshev 92.3 82.1 

Despite obtaining high classification accuracy values for some ML algorithms, mostly above 

70% (with a maximum of 87.2% for random forest), for colorectal cancer, the proposed model 

has a decrease in classification accuracy compared to the PCA-based model.  

3.2.3 Classification accuracy of classification models for gastrointestinal cancer 

The classification accuracy of MLs employed on the purine metabolites score, and on the PCs 

score for gastrointestinal cancer can be found in Table 3.6. 
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Table 3.6: Classification accuracy of the MLs for the PCA-based model and our proposed model 

for gastrointestinal cancer 

ML 

PCA-based model Proposed model 

Classification 

accuracy (%) 

Classification 

accuracy (%) 

Naïve Bayers 62.5 50 

SVM 

Linear 70.8 66.7 

Polynomial (order: 

0.5) 
62.5 62.5 

RBF 79.2 58.3 

Sigmoid 70.8 62.5 

Logic Regression 

(Regularization type: 

Lasso, Ridge, None) 

 

No balance class 

distribution (NBCD) 

 

Balance class 

distribution (BCD) 

Lasso, NBCD 58.3 83.3 

Lasso, BCD 58.3 58.3 

Ridge, NBCD 58.3 66.7 

Ridge, BCD 58.3 58.3 

None, NBCD 54.2 83.3 

None, BCD 58.3 58.3 

AdaBoost 58.3 37.5 

Random Forest 79.2 75 

kNN 

Metric: Euclidian 87.5 62.5 

Metric: Manhattan 87.5 62.5 

Metric: Chebyshev 83.3 66.7 

Similar to the results obtained for colorectal cancer, for gastrointestinal cancer, we observed a 

decrease in classification accuracy. Although the classification accuracy achieved for some MLs 

(SVM, polynomial regression, and logical regression) remains constant or improves, a 

comparison of the reduced values reveals a substantial difference between the values obtained 

for our proposed model and the PCA-based model (e.g., 62.5% for the PCA-based model vs. 

50% for the proposed model). 
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3.3 Discussion on the chemical interpretation of PCs loadings and purine 

metabolite decomposition  

The appearance of anomalous bands and artifacts is a common issue in SERS spectra, which can 

lead to the incorrect assignment of analytes or metabolites if they are not properly identified 

[48]. These bands can arise from contaminants, reagents used in substrate preparation, or 

byproducts of reactions and are selectively enhanced even at low concentrations due to 

resonance Raman scattering. Notably, specific anomalous bands, such as those from rhodamine-

like species, have been observed in SERS spectra obtained with silver colloids and can interfere 

with the analysis, possibly being mistaken for sample-related bands [49, 50]. 

Taking this into account and due to the differences in classification accuracy the loading plots of 

the principal components (PCs) for the datasets were examined, with a particular focus on 

identifying any peaks associated with crystal violet, given its use as a substrate. Crystal violet 

exhibits distinct spectral bands in the spectral regions around 1586-1590 cm-1 and 1619-1622  

cm-1 as well as a characteristic peak at 916 cm-1 [51], which can be used to differentiate it from 

other purine metabolites. 

We examined the loading plots of the 19 PCs for the three datasets, which accounted for 95% of 

the variance in prostate cancer, 92% in colorectal cancer, and 97% in gastrointestinal cancer. Our 

aim was to determine whether these PCs contained informative signals or noise and if any bands 

from crystal violet were present. For the sake of simplicity, we present only the loading plots for 

the PCs where crystal violet bands were detected (PC7 for prostate cancer, PC2 and PC5 for 

colorectal cancer, and PC1 and PC2 for gastrointestinal cancer), as well as the SERS spectra of 

crystal violet with its distinct peaks at 910, 1583, and 1617 cm-1 (Figure 3.4). 

In light of the consistent or enhanced classification accuracy achieved using the proposed model 

for prostate cancer, it was important to evaluate the PC spectra and determine whether the PCA-

based model's classification relied primarily on purine metabolites. For the prostate cancer data 

set, the spectra of the PC appear to be predominantly characterized by peaks associated with 

purine metabolites. However, the loading plot for PC7 contains bands characteristic of crystal 

violet. 

For colorectal and gastrointestinal cancer datasets, we found that bands attributable to purine 

metabolites were less frequent than those attributable to crystal violet, which appeared 
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prominently in the spectra of PC2 and PC5 for colorectal cancer and PC1 and PC2 for 

gastrointestinal cancer. 

  

  

Figure 3.4: (a) SERS spectra of crystal violet; Loading plots for (b) PC7 for prostate cancer,   

(c) PC2 and PC5 for colorectal cancer, and (d) PC1 and PC2 for gastrointestinal cancer 

While the hypoxanthine SERS spectra do present a band at 1586 cm-1 (see Figure 3.1) in the 

same region as crystal violet, if bands are also present in the 1619–1622 cm-1 region and around 

910–915 cm-1, they can be attributed to crystal violet. This observation underscores an 

explanation for the decrease in classification accuracy observed for the proposed model 

compared to the PCA-based model for colorectal and gastrointestinal cancer. 

Considering these findings, we deduce that the proposed model exclusively accounts for the 

contribution of purine metabolites in the serum SERS spectra. In contrast, the PCA-based model 

incorporates bands from various contributors, including crystal violet. Consequently, the results 

obtained for the proposed model are more accurate as it avoids incorporating bands that are not 

of interest, thus mitigating the misclassification caused by sample contamination, anomalous 

bands and artifacts. 

(a) (b) 

(c) (d) 
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3.4 Residual-based model and initial data-based model classification 

accuracy  

As a last step, we wanted to further improve the classification accuracy by investigating 

other contributions that may be excluded during the decomposition of the spectra and analyzing 

the residuals.  

After obtaining the residuals for the three data sets, we visualized the mean serum SERS 

spectra of patients with prostate, colorectal, and gastrointestinal cancer and controls from the 

initial dataset alongside the mean spectra of the residuals. Figures 3.5, 3.6, and 3.7 emphasize the 

distinctive bands from the three data sets attributable solely to the residuals. 

Using the residual datasets, we investigated their potential contributions to classification 

accuracy by comparing the performance of the residual-based model to the initial data-based 

model for the prostate, colorectal, and gastrointestinal cancer datasets.  

 

Figure 3.5: Mean serum SERS spectra of patients with prostate cancer and controls, alongside 

the mean SERS spectra of the residuals 
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Figure 3.6: Mean serum SERS spectra of patients with colorectal cancer and controls, alongside 

the mean SERS spectra of the residuals 

 

Figure 3.7: Mean serum SERS spectra of patients with gastrointestinal cancer and controls, 

alongside the mean SERS spectra of the residuals 
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3.4.1 Classification accuracy of classification models prostate cancer 

The classification accuracy values of various MLs for prostate cancer are summarized in Table 

3.7. 

Table 3.7: Classification accuracy of the MLs for the initial data-based model and the residual-

based model for prostate cancer 

ML 

Initial data-based 

model 

Residual-based 

model 

Classification 

accuracy (%) 

Classification 

accuracy (%) 

Naïve Bayers 61.1 55.6 

SVM 

Linear 55.6 61.1 

Polynomial 61.1 77.8 

RBF 61.1 66.7 

Sigmoid 72.2 66.7 

Logic Regression 

(Regularization type: 

Lasso, Ridge, None) 

 

No balance class 

distribution (NBCD) 

 

Balance class 

distribution (BCD) 

Lasso, NBCD 66.7 61.1 

Lasso, BCD 66.7 66.7 

Ridge, NBCD 72.2 61.1 

Ridge, BCD 66.7 66.7 

None, NBCD 61.1 72.2 

None, BCD 55.6 66.7 

AdaBoost 55.6 55.6 

Random Forest 72.2 77.8 

kNN 

Metric: Euclidian 94.4 83.3 

Metric: Manhattan 88.9 77.8 

Metric: Chebyshev 83.3 88.9 

Analyzing the results, we observe that for prostate cancer, the classification accuracy of the 

residuals-based model is comparable to or higher than that of the initial data-based model. 

Although the highest classification accuracy obtained for the residuals-based model (88.9%) is 

slightly lower than the highest classification accuracy obtained for the initial data-based model 

(94.4%), this aligns (see Table 3.4) with the proposed model's highest classification accuracy 

(88.9%) and is an improvement over the PCA-based model (83.3%). 
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3.4.2 Classification accuracy of classification models for colorectal cancer 

Table 3.8 presents the classification accuracy of different ML techniques for colorectal cancer.  

Table 3.8: Classification accuracy of the MLs for the initial data-based model and the residual-

based model for colorectal cancer 

ML 

Initial data-based 

model 

Residual-based 

model 

Classification 

accuracy (%) 

Classification 

accuracy (%) 

Naïve Bayers 61.5 71.8 

SVM 

Linear 82.1 84.6 

Polynomial 84.6 89.7 

RBF 89.7 92.3 

Sigmoid 76.9 76.9 

Logic Regression 

(Regularization type: 

Lasso, Ridge, None) 

 

No balance class 

distribution (NBCD) 

 

Balance class 

distribution (BCD) 

Lasso, NBCD 87.2 89.7 

Lasso, BCD 82.1 87.2 

Ridge, NBCD 92.3 89.7 

Ridge, BCD 84.6 87.2 

None, NBCD 79.5 84.6 

None, BCD 79.5 84.6 

AdaBoost 79.5 69.2 

Random Forest 89.7 92.3 

kNN 

Metric: Euclidian 89.7 92.3 

Metric: Manhattan 92.3 92.3 

Metric: Chebyshev 89.7 89.7 

The residuals-based model exhibited comparable or higher classification accuracy compared to 

the initial data-based model, with both achieving a maximum classification accuracy of 92.3%. 

Moreover, these results represent an improvement (see Table 3.5) over the proposed model's 

highest classification accuracy (87.2%) and match the performance of the PCA-based model. 

3.4.3 Classification accuracy of classification models for gastrointestinal cancer 

Similarly, Table 3.9 displays the classification accuracy of different ML techniques for 

gastrointestinal cancer.  
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Table 3.9: Classification accuracy of the MLs for the initial data-based model and the residual-

based model for gastrointestinal cancer 

ML 

Initial data-based 

model 

Residual-based 

model 

Classification 

accuracy (%) 

Classification 

accuracy (%) 

Naïve Bayers 41.7 41.7 

SVM 

Linear 79.2 79.2 

Polynomial 79.2 79.2 

RBF 70.8 79.2 

Sigmoid 87.5 62.5 

Logic Regression 

(Regularization type: 

Lasso, Ridge, None) 

 

No balance class 

distribution (NBCD) 

 

Balance class 

distribution (BCD) 

Lasso, NBCD 83.3 87.5 

Lasso, BCD 75 79.2 

Ridge, NBCD 79.2 79.2 

Ridge, BCD 75 79.2 

None, NBCD 75 83.3 

None, BCD 75 75 

AdaBoost 66.7 66.7 

Random Forest 79.2 83.3 

kNN 

Metric: Euclidian 75 75 

Metric: Manhattan 79.2 75 

Metric: Chebyshev 66.7 75 

The residuals-based model demonstrated comparable or higher classification accuracy than the 

initial data-based model, both achieving a maximum accuracy of 87.5%. This represents an 

enhancement (see Table 3.6) over the proposed model's highest classification accuracy (83.3%) 

and matches the performance of the PCA-based model. 
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Conclusions 

In conclusion, we developed a model to reduce the dimensionality of serum SERS spectra by 

focusing on known contributors such as uric acid, hypoxanthine, xanthine, urea, and creatinine. 

This model enhances the clinical interpretation of patient screening using SERS liquid biopsy by 

identifying the molecular origin of the classification. We first optimized the model to ensure that 

the contributions of these metabolites were uncorrelated. During testing on pure metabolite 

SERS spectra, we observed overlap between some purine metabolite bands. Therefore, we 

applied Gram-Schmidt orthogonalization to the SERS spectra of purine metabolites and used 

these as representative vectors for uric acid, hypoxanthine, xanthine, urea, and creatinine. Next, 

we decomposed each serum SERS spectrum onto these vectors to obtain scores reflecting the 

‘concentration’ of each metabolite in the sample. This dimensionality reduction resulted in five 

variables that could be used to build machine learning classifiers for cancer screening. 

To test the model, we built ML classifiers using these five variables and tested them on three 

datasets: one for colorectal cancer detection, one for gastrointestinal cancer detection, and one 

for prostate cancer detection. Since the general workflow uses PCA as a dimensionality 

reduction technique, we compared our model's cancer classification performance with results 

obtained by building the model on the first 19 PCs of each dataset. For prostate cancer, our 

model showed an overall improvement in classification performance. However, for colorectal 

and gastrointestinal cancer, we observed a decrease in classification accuracy. Analysis of the 

loading plot of the used PCs revealed that some PCs contained the signal of Crystal Violet (a 

known contaminant in SERS spectroscopy), suggesting that even though PCA showed better 

performance, the classification might have relied on contaminants rather than actual sample 

signals. In contrast, our model ensures the classification is based on molecules present in serum 

samples, enhancing the reliability and specificity of the results. 

We then reconstructed the serum SERS spectra from the scores of each metabolite and their 

spectra. By subtracting the reconstructed spectrum from the initial spectrum, we identified some 

SERS bands not characteristic of purine metabolites. These unidentified contributors in the 

serum SERS spectra could aid classification. However, caution is needed as these bands could 

include contaminants, leading to false results.  

The results of this thesis highlight the suggested model potential for improving SERS-based 

diagnostics. In addition to improving the accuracy and interpretability of SERS data, the spectral 
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decomposition and dimensionality reduction techniques created pave the way for more exact and 

dependable cancer screening procedures. 

Future research could explore several promising directions. The classification accuracy of the 

model might be improved by including additional metabolites and contaminants. Examining the 

potential for integrating sophisticated machine learning methods like deep learning models could 

improve the predictive capacity and resilience of the model. To evaluate the model's 

generalizability and clinical applicability, it would also be essential to validate it on larger and 

more varied clinical datasets. Investigating the mechanisms underlying the unidentified SERS 

bands could also unveil new biomarkers or advance knowledge of the spectral traits of different 

cancer types. These future directions hold the promise of further advancing the field of SERS-

based diagnostics and contributing to the development of more effective cancer screening and 

diagnosis tools. 
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