SYLLABUS

6 6 3	
1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	of Physics
1.3 Department	of Physics of the Hungarian line of study
1.4 Field of study	Physics
1.5 Study cycle	Master
1.6 Study programme /	Computational Physics
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	dis	scipline	Q	Quantum Computing			
2.2 Course coor	din	ator	Sándor Borbély				
2.3 Seminar coo	2.3 Seminar coordinator			Sándor Borbély			
2.4. Year of	1	2.5	2	2.6. Type of	Е	2.7 Type of	DA
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					
Other activities:					
3.7 Total individual study hours 94					

5.7 Total marriadal stady nouis	7 7
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	• quantum mechanics, programming in Python

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

•	•	Using in-depth knowledge of physics, mathematics, and programming in various multi- and inter-disciplinary fields.
	•	Applying quantum physics to understand of complex scientific phenomena.
<u>s</u>	•	By exploiting the quantum nature of light understand, use and develop quantum
nce		communication (quantum key distribution) protocols.
ete	•	Measure and manipulate the polarization state of photons.
Jup.	•	Design and perform single photon experiments.
- uo:	•	Use of quantum circuit construction packages.
i c	•	Run quantum circuits through cloud solutions.
ecif	•	Understand, use and develop new quantum circuits to resolve complex (hard) computational
Spe		problems. The second se
	•	I ransform optimization problems to a form, which is solvable by adiabatic quantum
		computers
	•	Use of quantum annealers for the solution of optimization problems.
ces	•	Accomplishment of professional tasks in an effective and responsible manner, in compliance
en		with the field-specific legislation and code of ethics.
, pet	•	Implementation of effective interdisciplinary teamwork methods at various hierarchical
m		levels.
	•	Effective use of information sources, as well as communication and professional-assisted
.Sa		training resources in both mother tongue and English.
ver		
Sui		
lra		
<u> </u>		

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 The students should acquire basic knowledge about quantum communication and quantum cryptography. The student should acquire basic knowledge regarding quantum circuit and adiabatic quantum computing. The students should acquire basis skills in using cloud computing infrastructure in order to access available quantum computers (quantum optimizers).
7.2 Specific objective of the discipline	 The students should become familiar with the experimental techniques used during the manipulation and measurement of polarization states of light. The student should become familiar with the experimental techniques used during single-photon experiments. The student should become familiar quantum circuit logic and should be able to implement quantum computing algorithms. The students should become familiar with concept of adiabatic computing and of the quantum annealer. The students should form their skills for programming the applications of these methods.

8. Content		
8.1 Course	Teaching methods	Remarks
1. Introduction. Quantum communication. Quantum Key	Explication,	
Distribution.	problematization,	
	multimedia projection,	
2. No Cloning Theorem. Quantum Teleportation, Bell	computer	
inequality.	exemplification.	
3 Quantum vs. Classical bit. Multiple qubits		
Measurements on qubits. Single qubit gates.		
Measurement gate.		
4 Multiple qubit gates. Circuit for the generation of Bell	_	
states. Quantum circuit for teleportation		
states. Quantum circuit for teleportation.		
5. Quantum parallelism. Deutsch and Deutsch-Jozsa		
algorithms		
	-	
6. Simulation of quantum systems on quantum circuits.		
Example: 1D Schrödinger equation.		
7 Quantum Fourier transform Phase estimation		
9. Order Einding		
8. Older Finding.		
	-	
9. Factoring as an order finding problem. Quantum		
search problem and Grover's algorithm.		
10. Quantum error correction.		
11. Adiabatic quantum computing. Quantum annealer.		
12. Technologies for the realization of quantum computers.		
Bibliography		
1. M. A. Nielsen and I.L. Chuang, <i>Quantum Computing an</i>	nd Quantum Information	
2. E. Rieffel and W. Polak, <i>Quantum Computing: A Gentl</i>	e Introduction	um Information
4 V Kasiraian Fundamentals of Quantum Computation	. A Foundation for Quant	
1. V. Ixushujun, Fundamentalis of Quantum Computing		
8.2 Laboratory	Teaching methods	Remarks
1. Linear polarization. Malus Law. Manipulation of	Experimental work	
the polarization direction.	in the laser physics	
	laboratory.	
	Individual programing tasks is	
2. Polarimetry as a quantum state tomography.	aiskit	
3 Michelson Interferometer. The quantum eroser	-1	
experiment		
4 Characterization of the entangle single-photon		
pair source.		
*		

5.	Simple quantum circuits (qubit swap, bell states, quantum teleportation)
6.	Qiskit runtime
7.	Quantum Fourier Transform part I
8.	Quantum Fourier Transform part II
9-1	1. Individual projects
12.	Error correcting circuits

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

10. Evaluation

•

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade $(9/)$				
10.4 Course	Knowlidge, understanding and capacity of application of quantum computing	Oral exam	50				
	methods.						
10.5 Seminar/lab activities	Individual work	Written report for each Lab (25%)+ Written report for the large project (25%)	50				
10.6 Minimum performance standards							
55%							

Date of approval

Signature of the head of department

.....

.....