1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Physics
1.3 Department	Physics
1.4 Field of study	Physics
1.5 Study cycle	Master
1.6 Study programme /	Common semester of all master programs
Qualification	

2. Information regarding the discipline

2.1 Name of the	dis	scipline	Сс	communication systems for embedded hardware				
2.2 Course coor	din	ator		Arthur Robert Tunyagi				
2.3 Seminar coordinator				Arthur Robert Tunyagi				
2.4. Year of	2	2.5	2	2.6. Type of	E	2.7 Type of	Speciality	
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					
Other activities:					
2.7 Total in dividual study have		75			1

3.7 Total individual study hours	75
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	•	Basic electronics
4.2. competencies	•	Programming skills with C and C++

5. Conditions (if necessary)

5.1. for the course	•	Internet access, 1AC plug /student and blackboard, projector
5.2. for the seminar /lab	•	Internet access, Ethernet and WiFi infrastructure, blackboard,
activities		projector, ESP32, ESP8266, NRF24L01+, WizNet5xxx, USR-K2,

ZigBee/XBee, E18MS1, Bluetooth HC-05 and Arduino Uno
platforms

6. Specific competencies acquired

Professional competencies	Skills for using the most common communication architectures available today for embedded hardware. Embedded system programming for real time applications. Development of hardware and software suitable for remote measurement and control systems .
Transversal competencies	Professional tasks effectively and responsibly with domain-specific ethics compliance under qualified assistance. Techniques are effective multidisciplinary team working on different hierarchical levels. Effective use of information sources and communication resources and training assistance, both in Romanian and in a foreign language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Familiarize the students with modern communications solutions used for embedded hardware.
7.2 Specific objective of the discipline	 During the course the students need to become familiar with: Analysis of a problem and optimal solution finding regarding hardware and software requirements for an embedded system. Ability of mapping critical parameters taking into account the specific of the problem (time requirements (real time)), electric parameters, mechanical parameters (mechatronics)) Choosing the right microcontroller and communication layer for the current problem. Understanding key elements of various protocols in order to be able to make the best choice for an uncovered situation during the lectures.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction into the Arduino framework, the	oral presentation and	2h
VS-Code with PlatformIO plugin.	practical examples	
Presentation of the hardware what will be		
used during the course. Overview of the most		
common protocols: Serial, RS232, RS485,		
SPI, I2C.		
2. The Espressif microcontrollers, from GPIO to	oral presentation and	2h
WiFi. Exploring the built in peripherals with	practical examples	
examples. The non-standard communication		
protocols like the ESP-NOW and the ESP-		
MESH, part 1/3		
3. The Espressif microcontrollers, from GPIO to	oral presentation and	2h
WiFi. Exploring the built in peripherals with	practical examples	
examples. The non-standard communication		
protocols like the ESP-NOW and the ESP-		

	MESH port 2/2		
4		1 1 1	01
4.	The Espressif microcontrollers, from GPIO to	oral presentation and	2h
	W1F1. Exploring the built in peripherals with	practical examples	
	examples. The non-standard communication		
	protocols like the ESP-NOW and the ESP-		
	MESH, part 3/3		
5.	Introduction into the 5-layer OSI model for	oral presentation and	2h
	Ethernet. From the Manchester encoding to	practical examples	
	the TCP socket.		
6	How a web server works? Using the HTTP	oral presentation and	2h
0.	for embedded applications. Understanding the	practical examples	211
	DOM in Web Using Aiay and WebSocket	practical examples	
	DOW III web. Using Ajax and websocket.		
7	part 1/2		21.
/.	How a web server works? Using the HTTP	oral presentation and	2h
	for embedded applications. Understanding the	practical examples	
	DOM in Web. Using Ajax and WebSocket.		
	part 2/2		
8.	Introduction into the MQTT protocol.	oral presentation and	2h
	Presenting the key features and characteristics	practical examples	
	of an MQTT system. Creating a local broker.		
	Creating embedded MQTT clients. Using		
	dedicated brokers (ThingSpeak and		
	AdafruitIO). MOTT 5 and 3.1.1.		
9.	Other applications of the Ethernet	oral presentation and	2h
	infrastructure. Sending Emails, using data	practical examples	
	logging in databases using NTP on embedded	r r r	
	devices		
10	Introduction to Bluetooth 2.1 EDR the	oral presentation and	2h
10.	standard Bluetooth profiles Using the SPP	practical examples	211
	nrofile The AT command set	practical examples	
11	Introduction to Bluetooth $4.0 \pm$ and the BLE	oral presentation and	2h
11.	The Conoria A agong Profile (CAD) and the	prostical examples	211
	Conorio ATTributo (CATT)	practical examples	
10	Introduction to ZigDag	oral progentation or 1	2h
12.	Introduction to ZigBee.	oral presentation and	20
10		practical examples	21
13.	Other RF based communication solutions	oral presentation and	2h
	using ISM frequencies. Discussion about	practical examples	
	several 315MHZ, 433MHZ, 866MHZ and		
	2.4GHZ transceivers. The modulation		
	techniques AM, OFK, (G)FSK, the LoRa		
	Chirp.		
14.	Security in communication. The AES, DES	oral presentation and	2h
	and RSA algorithms. The "https" versus the	practical examples	
	"http".		
Biblio	graphy:		
1) http	s://www.arduino.cc		
· 1			

2) http://esp32.net/

3) https://microchipdeveloper.com/xwiki/bin/view/applications/tcp-ip/

4) ESP8266, ESP32, Atmega328p datasheets

5) https://www.espressif.com/

6) https://microchipdeveloper.com/xwiki/bin/view/applications/tcp-ip/

7) J. Ganssle, The Art of Designing Embedded Systems, second edition

8) Michael J. Donahoo, TCP/IP Socket In C

9) Beej's Guides, TCP/IP, http://beej.us/guide/

10) http://www.beyondlogic.org/usbnutshell/usb-in-a-nutshell.pdf

11) Fred Eady, Implementing 802.11 with microcontrollers: Wireless Networking for Embedded Systems Designers

8.2 Set	minar / laboratory	Teaching methods	Remarks
1.	Introduction to Arduino. The VS-Code &	Oral presentation /	1h
	PlatformIO environment, the basic program	lab exercise	
	structure of an Arduino sketch.		
2.	Exploring the ESP32 peripherals.	Oral presentation /	1h
	Applications using the ESP-NOW and ESP- MESH	lab exercise	
3.	Exploring basic TCP various communication using the ESP32.	Oral presentation / lab exercise	1h
4.	Examples using the AsyncTCP library.	Oral presentation /	1h
5	Pagia wahaarwar ayamplas using the ESD22	Oral presentation /	1h
5.	understanding the hidden part of a webpage	lab exercise	111
6	More advanced webserver applications on	Oral presentation /	1h
0.	FSP32 Undating the page using Aiax	lab exercise	111
7	MOTT application on local broker. The	Oral presentation /	1h
,.	mosquito broker	lab exercise	
8.	MOTT on AdafruitIO. Phone application for	Oral presentation /	1h
	MQTT dashboard.	lab exercise	
9.	Using RTC disciplined by NTP. Sending	Oral presentation /	1h
	Email with the ESP32.	lab exercise	
10.	Creating a Bluetooth connection between	Oral presentation /	1h
	Arduino Uno using the HC-05 and the ESP32	lab exercise	
	in EDR mode.		
11.	Exploring the Bluetooth Low Energy (BLE).	Oral presentation /	1h
	BLE beacon and custom BLE device with	lab exercise	
	BLE notification service.		
12.	Application with E18MS1.	Oral presentation /	1h
		lab exercise	
13.	Wired Ethernet solutions with Wiz5100 and	Oral presentation /	lh
	USR-K2 hardware.	lab exercise	
14.	Application using the cryptographic engine of	Oral presentation /	lh
	the ESP32.	lab exercise	

Bibliography

1) https://www.arduino.cc

2) http://esp32.net/

3) https://microchipdeveloper.com/xwiki/bin/view/applications/tcp-ip/

4) ESP8266, ESP32, Atmega328p datasheets

5) https://www.espressif.com/

6) https://microchipdeveloper.com/xwiki/bin/view/applications/tcp-ip/

7) J. Ganssle, The Art of Designing Embedded Systems, second edition

8) Michael J. Donahoo, TCP/IP Socket In C

9) Beej's Guides, TCP/IP, http://beej.us/guide/

10) http://www.beyondlogic.org/usbnutshell/usb-in-a-nutshell.pdf

11) Fred Eady, Implementing 802.11 with microcontrollers: Wireless Networking for Embedded Systems Designers

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• Course content is consistent with other universities like USA ECE4760 Cornell University or Massachusetts Institute of Technology, USA 6002.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Presence of minimum 12 courses is required	Oral exam	60 %
10.5 Seminar/lab activities	Presence of minimum 12 laboratory's is required	Laboratory activity	40%
10.6 Minimum performance standards			
Basic understanding of the covered material during the lectures and the lab.			

Date

Signature of course coordinator

.....01.05.2025......

Tungos

Signature of seminar coordinator

Tungos

Date of approval

Signature of the head of department

.....

.....