SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Physics
1.3 Department	Department of solid state physics and advanced technologies
1.4 Field of study	Physics
1.5 Study cycle	Master of Science
1.6 Study programme /	MSc./Solid State Physics
Qualification	

2. Information regarding the discipline

2.1 Name of the disciplineAb initio computational methods in solids								
2.2								
2.3 Laboratory coordinator			Dia	na Benea, Scientif	ic res	earcher Dr.		
2.4. Year of	MSc. 2	2.5 Semester	r II 2.6. Type of C 2.7 Type of DC					
study			evaluation discipline					

3. Total estimated time (hours/semester of didactic activities)

		,			
3.1 Hours per week	3	Of which: 3.2 course	0	3.3	3
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	0	3.6	42
				seminar/laboratory	
Time allotment:				·	hours
Learning using manual, course support, bibliography, course notes					32
Additional documentation (in libraries, on electronic platforms, field documentation)					64
Preparation for seminars/labs, homework, papers, portfolios and essays				30	
Tutorship					7
Evaluations				3	
Other activities:					
3.7 Total individual study hours		126			•

3.8 Total hours per semester	126
3.9 Number of ECTS credits	3

4. Prerequisites (if necessary)

4.1. curriculum	Solid State and semiconductor Physics
	Quantum Physics
	Statistical Physics
4.2. competencies	• Knowledge related to computer operation, use of programs
	for editing and for graphical representation

5. Conditions (if necessary)

5.1. for the labs	•

5.2. for the seminar /lab	Computer + beamer for practical demonstrations
activities	• Seminar hall with computers + programs installed

6. Specific competencies acquired • The use of theoretical concept of the solid-state physics. • The use of computer codes to determine the properties of solids • Critical/constructive analysis of the results by using advanced models/theories. • Search and identification of the advanced formation opportunities and effective exploitation of learning techniques for the own development.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	This discipline uses the knowledge aquired in the (Advanced) Solid State Physics			
discipline	and (based on the theoretical ab initio methods) allows to determine main			
	electronic and magnetic properties of solids. It will develop the basic knowledge			
	underlining the relationship between the crystal structure and the electronic			
	properties of solids. The laboratory work will provide the basis for the theoretical			
	description of solids, allowing the comparison with the main experimental methods			
	used in our laboratory.			
7.2 Specific objective of the	• the students will be able to initiate modern research work, by combining the			
discipline	theoretical and experimental methods of investigation in the solid state			
	physics.			
	• the students will be able to characterize the solids from electronic and			
	magnetic points of view.			
	 the students will also be able to find the correlations between the chemical/crystal structure and the electronic properties of solids. 			

8. Content

ation. 3 hours
nodelling, e-
6 hours

Sham equations. Local density approximation.	learning	
Electronic structure of solids. One electron model.		6 hours
Multiple scattering theory (Korringa-Kohn-Rostocker).		
Green functions. Calculation of observables. Self-		
consistent calculations for metals and alloys (for ex. Fe,		
FeCo and Fe _{0.5} Co _{0.5})		
Self-consistent calculations for compounds with many		3 hours
atoms in the unit cell (for ex. Mn ₂ VAl and CrAs)		
Density of states. Density of states calculations for		3 hours
selected systems.		
Dispersion relation. Bloch spectral functions Dispersion		3 hours
relation calculations for selected systems, along different		
paths. Bloch spectral function calculations for the alloys		
Photoemission. Calculation of the valence-band		6 hours
photoemission spectra for several metals and alloys.		
Heisenberg model for exchange coupling. Calculation of		3 hours
the exchange-coupling parameters for several magnetic		
materials. Stability of spin structures.		
X-ray absorption (XAS). X-ray circular dichroism in		3 hours
absorption spectra. Calculation of the XAS spectra for		
several metals and alloys.		
Equilibrium lattice constants. Magnetic moments vs.		6 hours
lattice constants dependence. Atomic substitutions and		
prefferential site occupation.		
Bibliography		
 C. Kittel, Introduction to Solid State Physics (7ed., Wiley, 1996) N. W. Ashcroft, N. D. Mermin, <i>Solid State Physics</i>, Saunders, 1976. 		
3. SPRKKR manual – H. Ebert, LMU Munich 2017 (<u>http://ebert.cup.uni</u>	-muenchen.de)	
4. Structura electronica de benzi cu aplicatii in solide, D. Benea 2014 (luc	crari de laborator).	
5. P. Strange, Relativistic Quantum Mechanics (Cambridge University Pr	ess, 1998).	
6. H. Ebert, J. Minar, and D. Kodderitzsch, Rep. Prog. Phys. 74, 096501	(2011).	
7. A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and V. A. Guban		
Materials 67 , 65 (1987).		
8. Introduction to photoemission spectroscopy, M. Singh, Univ. Wuerzbu	ırg,	
https://www.cond-mat.de/events/correl14/manuscripts/sing.pdf	6,	
9. James E Penner- Hahn, , X-Ray Absorption Spectroscopy, Willey 200	5	
https://doi.org/10.1038/npg.els.0002984	-	
10. C.S. Schnohr and M.C. Ridgway, X-Ray Absorption Spectroscopy of S		
Springer Series in Optical Sciences 190, DOI 10.1007/978-3-662-4436	62-0_1	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The content of the course is congruent to the similar matter studied in representative European and national universities. In order to better adapt to the work market requirements, the content of the course was related with the main trends from this field in the regional scientific research, industry and business environment.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Courses	-	-	-
10.5 Seminar/lab activities	-ability to use the computer programs to generate the requested solids properties -correct interpretation of the results	Colloquium consists of computational projects (selected tasks). Time for solving the tasks: 3 h	50 %
	criteria related to the dutifulness, the interest for individual study.	Active presence at labs. Projects.	50 %
10.6 Minimum perform	ance standards		
	of theory/computational skills a e examination in a subject of rks.	-	

Date

Signature of discipline coordinator Signature of seminar coordinator

Sherce

Spence

15.09.2021

••••••

Date of approval

Signature of the head of department

.....

.....