Magnetic properties and electronic structures of rare-earth-transition metal compounds

E.Burzo Faculty of Physics, Babes-Bolyai University

- 1. Exchange enhanced paramagnets
- 2. Magnetic ordered compounds
  - 2.1 Exchange interactions
  - 2.2 Induced cobalt moments
  - 2.3 Magnetism and pressure effects

Transition metals:

- 2.3.1 Strong ferromagnetism, RCo<sub>5</sub> compounds
- 2.3.2 Weak ferromagnetism, RCo<sub>2</sub> compounds
- 2.3.3 Intermediate degree of localization

 $RCo_4X$  (X = B, Si), R-Co-B

3. Conclusions

Methods

Crystal structures Magnetic properties Magnetocaloric effect Band structure calculations LMTO-ASA LDA+U

# **1. Exchange enhanced paramagnets**





Low temperature  $\chi = \chi_0 (1+aT^2)$ High temperature  $T > T^* \chi = C(T-\theta)^{-1}$  $\theta < 0$ 

#### **Self consistent theory of spin fluctuations**

Wave number dependent susceptibility,  $\chi_q$ , for a nearly ferromagnetic alloy has a large enhancement for small q values

$$\chi_q = \frac{\overline{\chi}_q}{1 - J\overline{\chi}_q(\mu_0 \mu_B^2)}$$
  
Frequency of longitudinal spin fluctuations  $\omega^* \propto \frac{1}{\tau}$   
 $\tau$ -lifetime of LSF

Low temperature

 $\omega^* > \frac{k_B T}{\hbar} \quad \text{thermal fluctuations (transversal) slow}$  $\chi = s\chi_p \left[ 1 + \frac{\pi^2}{6} \left( 2 \frac{\eta''}{\eta} - 1.2 \frac{\eta'^2}{\eta^2} \right)_{E_F} s^2 T^2 \right]$ 

Approximation for nonmagnetic state

 $\chi \propto T^2$   $\chi(T)$  as T  $\eta'' > 0$  (necessary condition, not sufficient)



#### **High temperature**

Average mean amplitude of LSF is temperature dependent

$$\left\langle S_{loc}^{2} \right\rangle = 3k_{B}T\sum_{q}\chi_{q}$$

$$S_{loc}$$
 as  $T \land up$  to  $T^* (S_{loc})$ 

 $\frac{k_BT}{\hbar}$  S<sub>loc</sub>

 $S_{loc}$  determined by charge neutrality condition

The system behaves as having local moments for temperatures  $T > T^*$  where the frequency of thermal fluctuations is higher than of logitudinal.

Transition from exchange enhanced paramagnetism to Curie-Weiss type behaviour.



| Compound                                | χ <sub>exp</sub> ·10 <sup>-3</sup> at 2 K | $\chi_{calc}$ ·10 <sup>-3</sup> at 2 K | T <sub>max</sub> | <b>T</b> * | a·10 <sup>-3</sup> |        | M <sub>eff</sub> Co  |
|-----------------------------------------|-------------------------------------------|----------------------------------------|------------------|------------|--------------------|--------|----------------------|
|                                         | (emu/f.u.)                                | (emu/f.u.)                             | <b>(K)</b>       | <b>(K)</b> | exp.               | theor. | μ <sub>B</sub> /atom |
| LuCo <sub>2</sub>                       | 1.82                                      | 1.92                                   | 370              | 550        | 0.764              | 0.91   | 4.10                 |
| YCo <sub>2</sub>                        | 1.95                                      | 2.25                                   | 260              | 485        | 1.64               | 1.81   | 3.86                 |
| YCo <sub>1.8</sub> Ni <sub>0.2</sub>    | 2.9                                       | 3.02                                   | 215              | 408        | 1.24               | 1.36   | 3.84                 |
| YCo <sub>0.9</sub> Ti <sub>0.1</sub>    | 1.271                                     |                                        | 275              | 450        | 1.068              |        | 3.95                 |
| YCo <sub>1.875</sub> T <sub>0.125</sub> |                                           | 1.796                                  |                  |            |                    | 0.9961 |                      |
| YCo <sub>1.8</sub> Ti <sub>0.2</sub>    | 1.442                                     |                                        | 250              | 420        | 0.908              |        | 3.90                 |
| YC <sub>1.75</sub> Ti <sub>0.25</sub>   |                                           | 2.046                                  |                  |            |                    | 0.8945 |                      |
| YCo <sub>0.8</sub> Cr <sub>0.2</sub>    | 4.58                                      |                                        | 180              | 370        |                    |        |                      |

# 2. Magnetic ordered compounds 2.1 Exchange interactions RCo<sub>2</sub> compounds



Strong hybridization Co3d bands at site Co3b and Co9e with Er5d one

#### 4f-5d-3d model Campbell 1972 Burzo et al, J. Phys. Cond. Matter. 23, 1026001 (2011)



 $M_{5d} = M_{5d}(0) + \alpha G \qquad G = (g_J - 1)^2 J(J + 1)$ 4f-5d

 $J_{4f-5d} = \int g(\rho(r))\phi_{4f}^2(r)\phi_{5d}^2 dr$ 

 $M_{\rm M} = M(0) + \alpha G$ 

5d-3d short range exchange interactions  $H = -2J_{3d-5d}S_{5d}(0)\sum_{i}S_{3d_{i}}$   $\downarrow$   $M_{5d}(0) \propto \sum z_{i}M_{i} \quad \frac{M_{5d}(0)}{\sum z_{i}M_{i}} = 2 \cdot 10^{-2}$   $M_{5d}(0) = 0.03 \ \mu_{B} \ RNi_{2}$   $= 0.29 \ \mu_{B} \ RCo_{2}$   $= 0.49 \ \mu_{B} \ RFe_{2}$  Parimagnetism, Griffits phase $T > T_c$ The 5d-3d coupling exist at  $T > T_c$  $H_{ext}$  align  $M_R$  moments $\downarrow$  $J_{5d-3d}$  coupling $\downarrow$ Antiparallel oriented Co moment

hase M<sub>R</sub> 5d 3d M<sub>3d</sub>

H

 $T < T_2$ 

 $T > T_2$ 



 $J_{4f-5d} \propto G; G = (g_J-1)^2 J(J+1)$   $M_{5d}(f) = \alpha G, \alpha = 2.1 \cdot 10^{-2} \mu_B$ 

![](_page_8_Figure_6.jpeg)

#### **2.2 Induced cobalt moments**

Critical field for inducing cobalt ordered moment

- Itinerant electron metamagnetism: conditions for a paramagnetic substance to become ferromagnetic by application and subsequent removal of strong magnetic field (Wholfarth-Rhodes, 1962).
- Induced magnetism (epamagnetism): shift of the spin-up and spin down bands under the action of exchange of external field (Burzo 1977).

![](_page_9_Figure_4.jpeg)

![](_page_9_Figure_5.jpeg)

![](_page_9_Figure_6.jpeg)

#### RCo<sub>4</sub>M, M = Ga, Si, Al $M_{Co}$ strongly dependent on composition $\downarrow$ exchange interactions $\downarrow$ splitting on 3d bands

![](_page_10_Figure_1.jpeg)

![](_page_10_Figure_2.jpeg)

![](_page_10_Figure_3.jpeg)

![](_page_10_Figure_4.jpeg)

![](_page_11_Figure_0.jpeg)

 $s = 0.95 \text{ eV}/\mu_B$  general characteristic

No presence of itinerant electron metamagnetism

# **2.3 Magnetism and pressure effects** Magnetic behaviour of RCo<sub>5</sub> under pressure

#### **RCo<sub>5</sub> compounds**

Crystal structure CaCu<sub>5</sub>

Co 2c, 3g

R = Pr, Nd, Sm, Y ferromagnetic

R = Gd, Tb, Dy, Ho, Er ferrimagnetic

YCo<sub>5</sub>, GdCo<sub>5</sub>

Cobalt shows strong ferromagnetism

YCo<sub>5</sub>

 $H_a = 18 \text{ T} \text{ at } 4 \text{ K}, T_c = 1000 \text{ K}$ 

![](_page_12_Figure_10.jpeg)

spin-up sub-band  $\rightarrow$  shift to lower energies spin-down sub-band  $\rightarrow$  shift to higher energies exchange splitting diminishes

# **GdCo<sub>5</sub>: shift of sub-bands as in YCo<sub>5</sub>**

![](_page_13_Figure_1.jpeg)

#### **Dependence of cobalt moment on lattice parameters**

![](_page_14_Figure_1.jpeg)

#### **Transition from high spin state (HS) to low spin state (LS)**

YCo<sub>5</sub>  $v/v_0 = 0.90$ GdCo<sub>5</sub>  $v/v_0 = 0.86$ 

![](_page_15_Figure_2.jpeg)

R-Co 4f-5d-3d exchange interactions Y-Co 4d-3d exchange interactions  $M_{5d} = M_{5d}(0) + M_{5d}(f)$  $M_{5d}(0) \propto \sum z_i M_{Co_i}; M_{4d} \propto \sum z_i M_{Co_i}$ The same behaviour for  $M_{5d}(0)$  and  $M_{4d}$ 

![](_page_15_Figure_4.jpeg)

## **Pressure effects**

# **Co strong ferromagnet:**

- high hydrostatic pressure destroys the strong ferromagnetism
- the transformation proceeds in a stepwise fashion concomitant with isomorphic lattice charge
- $\succ$  there is a shift of the bands
  - spin up to lower energies
  - spin down to lower energies

# **Unstable thermodynamic state**

rather high DOS at both spin up and spin down bands

# 2.3.2 Weak ferromagnetism Pressure effects

# HoCo<sub>2</sub>

 $T < T_c = 85$  K Crystal structure: tetragonal I4<sub>1</sub>/amd

![](_page_17_Figure_3.jpeg)

![](_page_17_Figure_4.jpeg)

E.Burzo, D.Kozlenko et al J. Alloys Comp. 584, 393 (2014) **Magnetovolume effects** RCo<sub>2</sub>

$$\begin{split} \Gamma &= \frac{1}{k_{\rm B} T_{\rm c}} \frac{dT_{\rm c}}{dp} = \frac{d\ln T_{\rm c}}{d\ln v} \\ \Gamma &= \frac{5}{3} + BT_{\rm c}^{-2} \qquad \text{band model} \\ B &= \frac{5}{3} \frac{1}{1_{\rm b}} IT_{\rm F}^{2}, \ T_{\rm c} = T_{\rm F} (\bar{I} - 1)^{-1} \\ I \quad \text{effective} \qquad \text{intra-atomic} \quad \text{exchange} \\ \text{integral reduced from its bare value } I_{\rm b}, \\ \bar{I} &= I\eta(E_{\rm F}) \end{split}$$

$$B = 3.5 \cdot 10^{4} T_{c}^{-2}, \qquad T_{F} = 240 \text{ K}$$
$$I/I_{b} = 0.85$$
$$\downarrow \downarrow$$

![](_page_18_Figure_3.jpeg)

important correlation between 3d electrons

e I<sub>b</sub>,

E.B, D.K., J.Alloys Comp. 584, 393 (2014)

#### **RCo<sub>2</sub> compounds**

Behaviour: spin fluctuations

continuous change of the degree of localization of the cobalt moment

$$r = S_p/S_0$$

$$\mu_{eff} = g \sqrt{S_p(S_p + \mu_0)}$$

$$\mu_0 = gS_0$$

$$r \propto T_c^{-2/3} \text{ spin fluctuations}$$

$$r \propto T_c^{-1} \text{ band model}$$

![](_page_19_Figure_4.jpeg)

![](_page_19_Figure_5.jpeg)

The degree of localization increase with H<sub>exch</sub>

 $r \rightarrow \infty$  band model

# **Magnetocaloric effect**

 $Er_{1-x}Y_{x}Co_{2}$ 

![](_page_20_Figure_2.jpeg)

![](_page_20_Figure_3.jpeg)

# Er<sub>1-x</sub>Y<sub>x</sub>Co<sub>2</sub>

High magnetocaloric effect: first order transition x = 0, x = 0.1

Low magnetocaloric effect: second order transition x = 0.2, x = 0.3

![](_page_21_Figure_3.jpeg)

![](_page_21_Figure_4.jpeg)

# 2.4 Weak to strong ferromagnetism Gd<sub>x</sub>Y<sub>1-x</sub>Co<sub>4</sub>Si, Gd-Co-B

Transition from strong ferromagnetism to weak ferromagnetism. Example  $Gd_xY_{1-x}Co_4Si$ .

![](_page_22_Figure_2.jpeg)

![](_page_22_Figure_3.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_23_Figure_1.jpeg)

 $M_{5d}(0)$  or  $M_{5d} \propto \sum_i z_i M_{Co_i}$ 

![](_page_23_Figure_3.jpeg)

**RCo<sub>4</sub>B**, **R** = Ce, Y, Gd,  $R_2Fe_{17}C_2$ **Pressure effects** 

Localized model

 $\Gamma = a - bT_c$ 

$$a = -\frac{5}{3} + \frac{d\ln J_{eff}}{d\ln v}$$
$$b = \frac{5}{8} \frac{k_B N_0 g^2 I^2}{S(S+1) J_{eff}^2 I_b}$$

I effective intra-atomic exchange integral reduced from bare value  $I_b$ 

RCo<sub>4</sub>B a = 13.4 b = -0.022 K<sup>-1</sup> R<sub>2</sub>Fe<sub>17</sub>C<sub>2</sub> a = 37.5 b = -0.0063 K<sup>-1</sup>  $\frac{dln J_{eff}}{dlnv} \stackrel{6}{-11} R_2 Fe_{17} C_2$ RCo<sub>4</sub>B can also be described by  $\Gamma = a_1 + BT_c^{-2}$ Weak → strong ferromagnetim

SF model

![](_page_24_Figure_6.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_25_Figure_2.jpeg)

![](_page_25_Figure_3.jpeg)

# **Conclusions**

Exchange enhanced paramagnets induced temperature moments  $\chi \propto T^2 \rightarrow \chi \propto T^1$ Exchange interactions 4f-5d-3d model  $M_{5d} = M_{5d}(0) + M5d(f)$   $M_{5d}(0) \propto \sum z_i M_i$   $M_{5d}(f) \propto (g_J-1)^2 J(J+1)$ Induced cobalt moment  $H_{ex} = H_{cr} \cong 70 T$  $H > H_{cr} M_{co} = aH_{exch} a = (3 \cdot 10^{-2})\mu_B/T$ 

At T>T<sub>c</sub>: induced moments by alignment of  $M_R$  by external field due to 5d-3d coupling.

High magnetocaloric effect: compounds showing first order magnetic transition Pressure effect:

weak ferromagnet:direct collapse of M<sub>Co</sub>

strong ferromagnet: sequential collapse of  $M_{Co}$  with at least one step

# ACKNOWLEDGMENTS

This work was supported by the Romanian Ministry of Education and Research (UEFISCDI), grant no. PN-II-ID-PCE-2012-4-0028.

# Thank you very much for your attention