MAGNETIC AND MAGNETOCALORIC PROPERTIES OF (Er_{1-x}Y_x)Co₂ COMPOUNDS

István BALASZ-MURESAN, Izabela BALASZ, Liviu CHIONCEL* and Emil BURZO

Faculty of Physics, Babes-Bolyai University, RO-400084, Cluj-Napoca, Romania

*Institut für Physik, Universisty Augsburg, 86135 Augsburg, Germany

To obtain information of physical properties of $(Er_{1-x}Y_x)Co_2$ compounds,

were studied by X-rays, magnetic measurements and band structure calculations.

number of challenging physical phenomena [1]

transition temperature $T_c \approx 35 \text{ K}$ [1]

> The rare earth - transition metal intermetallic compounds

R-TM (R - rare earth; TM - transition metal) exhibit a rich

> ErCo₂ is ferrimagnetically ordered compound with magnetic

> The ytrium will change the physical properties of the ErCo₂.

> (Er_{1-x}Y_x)Co₂ with $x \le 0.3 \Rightarrow$ in an induction furnace, under high purity argon atmosphere.

EXPERIMENTAL

- ightharpoonup X-ray diffraction analyses \Rightarrow all the samples shows only one phase (Bruker D8 Advance AXS diffractometer with Cu Ka radiation)
- ightharpoonup Magnetic measurements \Rightarrow in magnetic fields $\mu_0 H \le 12*10^4$ Oe and $4.2 \le T \le 500$ K (Oxford Instruments)

RESULTS AND DISCUSSION

 \rightarrow XRD \Rightarrow (Er_{1-x}Y_x)Co₂ compounds with x \leq 0.3 crystallize in a cubic MgCu₂-type structure [1]. The lattice parameters, determined at room temperature, show a Veguard-type dependence.

Fig. 1. Cubic MgCu₂-type structure of ErCo2

Fig. 2. Lattice parameters of Er_{1-x}Y_xCo₂

 \rightarrow Magnetic measurements (1) \Rightarrow The temperature dependences of magnetizations of zero field cooled (ZFC) and field cooled (FC) Ero, 740, 3Co2 compound is given in Fig. 3. The compounds are ferrimagnetically order - Fig. 4.

Fig. 3. Temperature dependences of magnetizations

in a field of 0.5 T, for sample $\text{Er}_{0.9}\text{Y}_{0.1}\text{Co}_2$ field

cooled (FC) and zero field cooled (ZFC).

Fig. 4. Magnetization isotherms of Er_{0.9}Y_{0.1}Co₂

___ 16 K

 \rightarrow Magnetic measurements (2) \Rightarrow The cobalt moments determined from saturation data (H ≤ 12 T, T = 4.2 K) decrease when Y content is higher- Fig. 5.

The reciprocal susceptibilities follows

Fig. 5. Co moments in $Er_{1-x}Y_xCo_2$

Fig. 6. Reciprocal susceptibilities in Er_{1-x}Y_xCo₂

 \rightarrow Magnetic measurements (3) \Rightarrow Assuming that the effective erbium moment is given by its free ion value [2], the contributions of cobalt atoms to the Curie constants were determined. The effective cobalt moments, $M_{eff}(Co)$, decrease little in the investigated composition range - Fig.7. The ratio $r = S_p/S_o$ between the number of spins determined from effective cobalt moment and saturation one can be founded in spin fluctuation

 $(r \propto T_c^{-2/3})$ model - Fig 8.

Fig. 7. Composition dependences of the effective cobalt moments and Curie temperatures

Fig. 8. The dependence of the ratios $r = S_p/S_0$ on the Curie temperatures

ightharpoonup Magnetic measurements (4) \Rightarrow The computed entropy changes, ΔS , for the $Er_{0.1}Y_{0.9}Co_2$ compound is plotted in - Fig. 9. The $-\Delta S_{max}$ values follow a $H^{2/3}$ type [3] dependence as expected in mean field model - Fig. 10. The specific renormalized power in a field H < 2.25 T an only constant for a given composition decrease from 60 J/kg*T (x=0) to 12 J/kg*T (x=0.2).

Fig. 9. Magnetocaloric effect for Er_{0.9}Y_{0.1}Co₂

Fig. 10. $-\Delta S_{max}$ for $Er_{1-x}Y_xCo_2$

CONCLUSSION

The substitution of erbium with ytrium in ErCo2 decrease the magnetic interaction and also the magnetocaloric effect!!!

REFERENCES

[1] E. Burzo, A. Chelkovski & H. R. Kirchmayr, Compounds of rare-earth elements and 3d elements. Landolt Börnstein Handbook, vol. 19d2, Springer Verlag, (1990). [2] E.Burzo, Int. J. Magn. 3, 171 (1972)

[3] Q.Y.Dong, H.W.Zhang, J.L.Shen, J.R.Sun, B.G.Shen, J. Magn. Magn. Mater. 319, 56 (2007)

Acknowledgements

This work was supported by the Romanian Ministry of Education and Research (UEFISCDI),

grant no. PN- II- ID- PCE-2012- 4- 0028.