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Finite-difference time-domain (FDTD) 

 

based on Dennis Sullivan, A Brief Introduction to The Finite-Difference Time-Domain 

(FDTD) Method  http://www.mrc.uidaho.edu/~dennis/ECE538-files/Intro(FDTD).doc 

 

 Maxwell’s equations, formulated circa 1870, represent a fundamental unification of 

electric and magnetic fields predicting electromagnetic wave phenomena which Nobel Laureate 

Richard Feynman has called the most outstanding achievement of 19th-century science. Now, 

engineers and scientists worldwide use computers ranging from simple desktop machines to 

massively parallel arrays of processors to obtain solutions of these equations. As we begin the 

21st century, it may seem a little odd to devote so much effort to study solutions of the 19th 

century’s best equations. Thus we ask the question: “Of what relevance is the study of 

electromagnetics to our modern society?” 

 The goal of this unit is to help answer this question. We shall discuss prospects for using 

numerical solutions of Maxwell's equations, in particular the finite-difference time-domain 

(FDTD) method, to help innovate and design key electrical engineering technologies ranging 

from cellphones and computers to lasers and photonic circuits. Whereas the study of 

electromagnetics has been motivated in the past primarily by the requirements of military 

defense, the entire field is shifting rapidly toward important commercial applications in high-

speed communications and computing that touch everyone in their daily lives. Ultimately, this 

will favorably impact the economic well-being of nations as well as their military security. 

 

 

  

 

 

1.1 One-dimensional Simulation in Free Space 

 Electromagnetics is governed by the time-dependent Maxwell’s curl equations, which in 

free space are 

  
E

t


1

 0

  H  (1.1 a) 

  
H

t
 

1

0

  E . (1.1 b) 

E and H are vectors in three dimensions, but if we consider only one dimension 

  
Ex

t
 

1

 0

Hy

z  (1.2 a) 

  
Hy

t
 

1

0

Ex

z . (1.2 b) 

To put these equations in a computer, we approximate the derivatives with the “finite-difference” 

approximations: 

 
Ex

n1 / 2(k) Ex

n1/ 2(k)

 t
 

1

 0

Hy

n(k 1/ 2)  Hy

n(k 1/ 2)

x  (1.3 a) 
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Hy

n1(k 1/ 2)  Hy

n(k 1/ 2)

t
 

1

0

Ex

n1/ 2 (k  1) Ex

n1/ 2 (k)

x . (1.3 b) 

In these two equations, time is specified by the superscripts, i. e., “n” actually means a time 
t  t n,  and “k” actually means the distance z x k. (It might seem more sensible to use  z  

as the incremental step, since in this case we are going in the z direction.  However, x  is so 

commonly used for a spatial increment that I will use x .)  

We rearrange the above equations to : 

 
Ex

n1/ 2
(k)  Ex

n1/2
(k)

t

 0  x
Hy

n
(k 1/ 2)  Hy

n
(k 1/ 2)  (1.4 a) 

 
Hy

n1
(k  1/ 2)  Hy

n
(k 1/ 2)

t

0  x
Ex

n1/ 2
(k  1) Ex

n 1/ 2
(k) . (1.4 b) 

Notice that the calculations are interleaved in both space and time. In Eq. (1.4 a), for example, 

the new value of E
x  is calculated from the previous value of E

x  and the most recent values of 
Hy . This is the fundamental paradigm of the finite-difference time-domain (FDTD) method Fig. 

1.1) [1]. 

 Eq. (1.4 a) and (1.4 b) look very similar.  However,   0  and 0  differ by several orders of 

magnitude: 

  
8

0 8.8510 /Fm  , 

  
7

0 4 10 /Hm    . 

Therefore, E
x  and Hy  will differ by several orders of magnitude. This is circumvented by 

making the following change of variables [2]: 

   
 ̃E 

 0

 0

E. (1.5) 

Substituting this into Eq. (1.4a) and (1.4b) gives 

 
 ̃E x

n1/ 2
(k)   ̃E x

n1/2
(k)

1

 0 0

t

x
Hy

n
(k 1/ 2) Hy

n
(k 1/ 2)  (1.6a) 

 Hy

n1
(k  1/ 2)  Hy

n
(k 1/ 2)

1

 00

t

x
 ̃E x

n1/ 2
(k  1)  ̃E x

n1 / 2
(k)  (1.6b) 

Now both E  and H  will have the same order of magnitude.  We will call this “normalized” 

units.  Physicist call this Gaussian units.  Note that 
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This quantity is called the “impedance of free space.” 

 Once the cell size x  is chosen, then the time step  t  is determined by  
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 t 

x

2 c0
 (1.7) 

where c0  is the speed of light in free space.  Therefore, 

 
1

 0 0

t

x
 c0 

x/ 2  c0

x


1

2  (1.8) 

  
Figure 1.1.  A diagram of the calculation of E and H fields in FDTD.   

 

Re-writing Eq. (1.6 a) and (1.6 b) in C computer code gives the following:  

 ex[k] = ex[k] + 0.5*( hy[k-1] - hy[k] ) (1.9 a) 

 hy[k] = hy[k] + 0.5*( ex[k] - ex[k+1] ) (1.9 b) 

Note that the n or n+1/2 or n-1/2 in the superscripts is gone. Time is implicit in the FDTD 

method. In Eq. (1.9 a), the ex on the right side of the equal sign is the previous value at n - 1/2, 

and the ex on the left side is the new value, n+1/2, which is being calculated. Position, however, 

is explicit.  The only difference is that k + 1/2 and k - 1/2 are rounded off to k and k-1 in order to 

specify a position in an array in the program.  Figure 1.2 illustrates a simulation in free space.  

The following things are worth noting: 

 

1. The E
x  and Hy  values are calculated by separate loops, and they employ the interleaving 

described above. 

2. After the E
x  values are calculated, the source is calculated. This is done by simply 

specifying a value of E
x  at the point k = 1, and overriding what was previously calculated. 

This is referred to as a “hard source,” because a specific value is imposed on the FDTD grid. 

 

 

Simulation in a Lossless Dielectric Material. 

 

 Now consider the case where the medium is not free space but a medium that has a 

relative dielectric constant other than one.  That mean Eq. (1.2 a) must be written 

  
0

1 yx

r

HE

t x




 
. 
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{In this class we will not be dealing with magnetic material, so the permeability is always 

0  .  Therefore, Eq. (1.2 b) does not change.}  If we got through the same finite-difference 

approximation and switch to normalized units, Eq (1.6 a) becomes 
  ex[k] = ex[k] + cb[k]*( hy[k-1] - hy[k] ), 

  cb[k]=0.5/epsilon. 

 

1.2  Simulation in a Lossy medium  

Once more we will start with the time-dependent Maxwell's curl equations, but we will write 

them in a more general form, which will allow us to simulate propagation in media which have 

conductivity: 

  
E

t
   H  J  (1.10 a) 

  
H

t
 

1

0

  E . (1.10 b) 

J  is the current density, which can also be written 

  J   E , 

where   is the conductivity. Putting this into Eq. (1.10 a) and dividing through by the dielectric 

constant we get 

  
E

t


1

 0 r

  H 


 0 r

E . 

We now revert to our simple one-dimensional equation: 

 

  
Ex t 
t


1

 r 0


Hy t 

z




 r 0

Ex t  ,  

and make the change of variable in Eq. (1.5) which gives 

 
  ̃E x t 

t


1

 r  00


Hy t 

z




 r 0

 ̃E x t   (1.11 a) 

 
Hy t 

t
 

1

 0 0


  ̃E x t 

z . (1.11 b) 

Next take the finite difference approximations for both the temporal and spatial derivatives 

similar to Eq. (1.3 a): 

 

 

 ̃E x
n1 / 2

k   ̃E x
n1 / 2

k 

t


1

 r  0 0


Hy

n k 1/ 2  Hy

n k 1/ 2 

x




 r 0

 ̃E x
n 1/ 2 k    ̃E x

n1 / 2 k 

2
.

 (1.12) 

Notice that the last term in Eq. (1.11 a) is approximated as the average across two time steps in 

Eq. (1.12).  From the previous section 

  
1

 0 0

t

x


1

2 ,   

so Eq. (1.12)  becomes  
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 ̃E x
n1/ 2 k  1

t  

2 r 0

 

 
 

 

 
 

 ̃E x
n1/ 2 k  1

 t 

2 r 0

 

 
 

 

 
 


1/ 2

 r

Hy

n k 1/ 2  Hy

n k  1/ 2  
  

or 

 

 
 ̃E x

n 1/ 2
k  

1
t 

2 r 0

 

 
 

 

 
 

1
t 

2 r 0

 

 
 

 

 
 

 ̃E x
n 1/ 2

k 
1/ 2

 r  1
t 

2 r 0

 

 
 

 

 
 

Hy

n
k 1/ 2  Hy

n
k 1/ 2  . 

  

From these we can get the computer equations 

 ex[k] = ca[k]*ex[k] + cb[k] *( hy[k-1] - hy[k] ) (1.13 a) 

 hy[k] = hy[k] + 0.5*( ex[k] - ex[k+1] ), (1.13 b) 

where 

 eaf = dt*sigma/(2*epsz*epsilon) (1.14 a) 

 ca[k] = (1. - eaf)/(1. + eaf) (1.14 b) 

 cb[k] =0.5/(epsilon*(1. + eaf)). (1.14 c) 
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Figure 1.1 Simulation (source code in fdtd1d.m) of 1-GHz sinusoidal wave propagating in a 

nonpermeable lossy medium (epsr=1.0, sigma=5.0e-3 S/m).  The grid resolution (dx = 1.5 cm) is 

chosen to provide 20 samples per wavelength.  The Courant factor S=c*dt/dx is set to the 

stability limit (S=1).  In 1-D, this is the "magic time step." The total number of time steps 

(nmax=240) corresponds to a physical  time of 12 ns. The grid is terminated with electric-field 

components at the far-left (i=1) and far-right (i=ie) boundaries.  The sinusoidal wave is launched 

by an electric-field hard-source condition at i=1.  The simplest radiation boundary condition for 

plane wave propagation is used to update the electric field at i=ie:  Ez(ie,n+1) = Ez(ie-1,n). 

1.3 Courant condition and numerical stability 

 An electromagnetic wave propagating in free space cannot go faster than the speed of 

light. To propagate a distance of one cell requires a minimum time dt=dx/c. Courant condition 

imposes that the Courant factor  S=c*dt/dx must be smaller than the limit S=1. In n dimensions 

the stability is achieved for S<1/√n. In relations 1.7,1.8  was chosen Courant factor S=1/2. 

 

1.4 Numerical dispersion 

 The numerical algorithm causes the dispersion of the simulated wave modes in the 

computational space. That is, the phase velocity of numerical modes can vary with wavelength, 

direction of propagation and lattice discretization. This numerical dispersion can lead to non-

physical results and must be taken in account to understand the FDTD algorithm and its accuracy 

limits. 

In 1D the dispersion relation is: 

(1/c∆t)
2
 sin

2
(ω∆t/2)=(1/∆x)

2
 sin

2
(k∆x/2) 

In the limit when ∆x, ∆t tend to zero it reduces to dispersion relation in continuum medium: 

ω2=k2c2 
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1.5 Absorbing boundary condition in 1D 

 Absorbing boundary conditions are necessary to keep outgoing E and H fields from being 

reflected back. In order to calculate E field we need to know the surrounding H values. But at the 

edge we will not have the value to one side. But we know that there are no sources outside the 

simulation space and the fields at the edge  must be propagating outward. 

If Courant factor is S=1/2 dt=dx/2 and we need two time steps for a wave front to cross one cell. 

An acceptable boundary condition might be Ex 
n 

(-0) = Ex 
n-2 

(+0).  

For S=1 the boundary condition is Ex 
n 

(-0) = Ex 
n-1 

(+0). 

 

Perfect magnetic conductor (PMC). The magnetic-field node in the grid is initially zero and 

remains zero throughout the simulation. When the field encounters this node it essentially see a 

perfect magnetic conductor (PMC). To satisfy the boundary condition at this node, i.e., that the 

total magnetic field go to zero, a reflected wave is created which reverses the sign of the 

magnetic field but preserves the sign of the electric field. 

 

Perfect electric conductor (PEC). The electric-field node in the grid is initially zero and remains 

zero throughout the simulation. When the field encounters this node it behaves like a perfect 

electric conductor (PEC). To satisfy the boundary conditions at this node, the wave is again 

reflected, but this time the electric field changes sign while the sign of the magnetic field is 

preserved. 

 

1.6 Sources 

 In simulation we have hard and soft sources. We call a hard source when a value is 

assigned to Ex. Ex is usually dcalculated at some point by the evolution equation. For a hard 

source we are specifying the desired value of Ex and overriding what was previously calculated. 

A propagating pulse will see that value and be reflected.  

We call a soft source when lue is added to Ex at a certain point. A propagating pulse will just 

pass through a soft source.  

We can have different kinds of sources: 

sinusoidal wave: sin(omega*t) 

temporal Gaussian: exp(-t*t/2) 

1.7 Cell size 

 Enough sampling points must be taken to ensure that an adequate representation of 

continuum is made. A good rule of thumb is 10 points per wavelength (for the medium with 

highest dielectric constant because it corresponds to the medium with the shortest wavelength in 

the simulation space). 

 

 

2. 2D FDTD  

 

Not surprisingly, we will start with Maxwell's equations  

  

  ̃D 

t


1

 0 0

  H  (2.1 a) 

  
 ̃D ()   r

*
()   ̃E ( ) (2.1 b) 
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H

t
 

1

 0 0

   ̃E . (2.1 c) 

Once again, we will drop the ~ notation, but it will always be assumed that we are referring to the 

normalized values. 

Eqs. (2.1.a) and (2.1.c) produce six scalar equations, that ca be grouped in 2 sets of equations: 

transverse-magnetic (TM z-polarized) mode equations containing Hx, Hy and Ez and transverse-

electric (TE z-polarized) mode equations containing Ex, Ey and Hz. The TM equations are: 

 

 

 

 

(2.2 a) 

 

 

(2.2 b) 

 

(2.2 c) 

 

 

(2.2 d) 

 

 

The finite difference equations are: 

(2.3) 

 

Where we used the following interleave of E and H fields: 
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The TE equations can be obtained by permuting E and H fields in eq. (2.2) and (2.3). 

Taking the time step  t : 

 
 t 

x

2 c0

 (2.4) 

we get the 

C code: 

 

(2.5 a) 

(2.5 b) 

(2.5 c) 

(2.5 d) 

(2.5 e) 
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Figure13.6. Simulation (source code in fdtd2d.m) of air-filled rectangular cavity resonator with a 

6cm metal cylindrical scatterer. The cavity is excited by a Gaussian pulse with a carrier 

frequency of 5 GHz.The grid resolution (dx = 3 mm) was chosen to provide at least 20 samples 

per wavelength at the center frequency of the pulse (which in turn provides approximately 10 

samples per wavelength at the high end of the excitation spectrum, around 10 GHz).The 

computational domain is truncated using the perfectly matched layer (PML) absorbing boundary 

conditions. The formulation used in this code is based on the original split-field Berenger PML.  

Exponential time stepping is implemented in the PML regions.  

 

 

 

 

 

3. 3D FDTD  

3.1 3D FDTD 

The original FDTD paradigm was described by the "Yee Cell," (Fig. 3.1), named, of course, after 

Kane Yee [1].  Note that the E and H fields are assumed interleaved around a cell whose origin is 

at the location I, J, K.  Every E field is located 1/2 cell width from the origin in the direction of 

its orientation; every H field is offset 1/2 cell in each direction except that of its orientation.   
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  Figure 3.1.  The Yee cell. 

 

Not surprisingly, we will start with Maxwell's equations  

  

  ̃D 

t


1

 0 0

  H  (3.1 a) 

  
 ̃D ()   r

*
()   ̃E ( ) (3.1 b) 

  
H

t
 

1

 0 0

   ̃E . (3.1 c) 

Once again, we will drop the ~ notation, but it will always be assumed that we are referring to the 

normalized values. 

Eqs. (3.1.a) and (3.1.c) produce six scalar equations, two of which are: 

  

  
Dz

t


1

 00

Hy

x

Hx

y

 

 
 

 

 
   (3.2 a) 

  
Hz

t


1

 00

Ex

y

Ey

x

 

 
 

 

 
 . (3.2 a) 

The first step is to take the finite difference approximations.   

 

Dz
n 1/ 2 (i, j,k 1/ 2)  Dz

n 1 / 2(i, j,k  1/ 2)


t

x   0 0

(Hy

n
(i  1/ 2, j,k  1/ 2) Hy

n
(i  1/ 2, j, k 1/ 2)

 Hx
n (i, j  1/ 2,k 1/ 2)  Hx

n(i, j  1/ 2,k 1/ 2))

 (3.3 a) 

 

 

Hz
n1(i  1/ 2,j 1/ 2,k)  Hz

n (i  1/ 2, j  1/ 2,k)


t

x   00

(Ey

n1/ 2
(i 1, j  1/ 2,k) Ey

n1/ 2
(i, j  1/ 2,k)

 Ex
n 1/ 2 (i  1/ 2, j 1,k) Ex

n1 / 2(i 1/ 2, j,k) )

. (3.3 b) 
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The relationship between E and D, corresponding to Eq. (3.1 b) is exactly the same as the one-

dimensional or two-dimensional cases, except now there will be three equations.  Different 

materials can be specified at each cell within the FDTD program (Fig. 3.2). 

 

   
Figure 3.2.  Different properties can be specified for each cell in an FDTD program. 

 

Many simulations model the applicator as well as the body being radiated.  A simple dipole 

antenna is illustrated in Fig. 3.3.  It consists of two metal arms.  A dipole antenna functions by 

having current run through the arms, which results in radiation.  FDTD simulates a dipole in the 

following way:  The metal of the arms is specified by setting the appropriate parameters to zero 

in the cells corresponding to metal.  This insures that the corresponding Ez  field at this point 

remains zero, as it would if that point were inside metal.  The source is specified by setting the 
Ez  field in the gap to a certain value.  (In a real dipole antenna, the Ez  field in the gap would be 

the result of the current running through the metal arms.)  Notice that we could have specified a 

current in the following manner:  Ampere’s circuital law says 

  
H dl  I

C

 , 

ie., the current through a surface is equal to the line integral of the H field around the surface.  

  
Figure 3.3.  A dipole antenna is simulated by specifying the cells of the antenna arms with values 

that insure the E field will remain at zero.  The input stimulation is accomplished by specifying 

an E field at the gap of the dipole.  The current in the dipole arms is simulated by the surrounding 

H fields.  The E fields will radiate outward. 
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3.2 The Perfectly Matched Layer (PML) 

 Without the proper truncation of the problem space by appropriate boundary conditions, 

unwanted reflections would return to cause errors in the simulation  (Fig. 3.4).  These outgoing 

waves must be eliminated by an absorbing boundary condition (ABC). 

  
Figure 3.4.  Without an absorbing boundary condition, outgoing waves would be reflected back 

into the problem space (left).  The perfectly matched layer (PML) is one of the best means of 

truncating outgoing waves (right). 

 

One of the most flexible and efficient ABCs is the perfectly matched layer (PML) developed by 

Berenger [2]. The basic idea is this: if a wave is propagating in medium A and it impinges upon 

medium B, the amount of reflection is dictated by the intrinsic impedances of the two media (Fig. 

3.5) 

  
 

 A  B

 A  B
, (3.4) 

which are determined by the dielectric constants   and permeabilities 


 of the two media 

   



. (3.5) 

   
Figure 3.5  The reflection at the interface of two media is dependent on their respective 

impedances. 

 

Normally, in free space, 0  and 0  , but in our normalized units, 1   in free space.   

When we added the flux density formulation, we switched to 
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  F
t







E
H 

       * D E   

  F
t







H
E 

We have added “fictitious” dielectric constant and permeability ,F F   that we will use to 

implement the PML.  

Sacks, et al. [3], shows that there are two conditions to form a PML: 

 

1.  The impedance going from the background medium to the PML must be constant, 

  0   m 
 *

Fx

 *
Fx

=1. (3.6) 

 The impedance is one because of our normalized units. 

2. In the direction perpendicular to the boundary (the x direction, for instance), the relative 

dielectric constant and relative permeablitiy must be the inverse of those in the other directions, 

i.e., 

  
*

Fx 
1


*

Fy
 (3.7 a) 

  
*

Fx 
1


*

Fy
 (3.7 b) 

We will assume that each of these is a complex quantity of the form 

  
 *

Fm   Fm 
 Dm

j 0
 for m = x or y (3.8 a) 

  
*

Fm  Fm 
 Hm

j0
 for m = x or y (3.8 b) 

The following selection of parameters satisfies Eqs. (3.7 a) and (3.7 b) [4]: 

  Fm  Fm 1   (3.9 a) 

  
Dm

 0


 Hm

 0


 D

 0
.  (3.9 b) 

Substituting Eq. (3.9)  into (3.3),  the value in Eq. (3.9) becomes 

  0   m 
 *

Fx


*

Fx


1  (x) / j 0

1  (x) / j 0

 1.  

This fulfills the first requirement above.  If   increases gradually as it goes into the PML, 

causing 
Dz  and Hy  to be attenuated.   

 

 

 

 

 

 

PML in X direction for two-dimensions 

We take eqs.(2.2) and go to Fourier domain in time (d/dt becomes jω): 
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Inserting eqs. (3.8) we get: 

 

(3.10 a) 

 

(3.10 b) 

 

 

(3.10 b) 

 

Eq.(3.10 a) with finite difference approximation: 

 

 

 

 

 

(3.11a) 

 

with: 

 

 

 

 

 

 

Eq.(3.10 c) with finite difference approximation: 

 

 

(3.11c) 

 

 

with: 

 

 
 

Eq.(3.10 b) with finite difference approximation: 
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(3.11c) 

where: 

 

 

 

 

 

 

 

 

 

 

 

Several  profiles have been suggested for grading σ(i) of PML. The most successful use  is the 

polynomial variation of the PML loss with depth i inside PML region: 

 

 

 

 

 

 

(3.12) 
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Figure 3.6. Simulation (source code in fdtd3d_pec.m) of air-filled rectangular cavity resonator 

10x4.8x2 cm. The cavity is excited by a line of current sources oriented along the z-direction and 

located in the center of the x-y plane. The source waveform is a differentiated Gaussian pulse 

given by  J(t)=J0*(t-t0)*exp(-(t-t0)
2
/tau

2
), where tau=50 ps.  The FWHM spectral bandwidth of 

this zero-dc-content pulse is approximately 7 GHz. The grid resolution (dx = 2 mm) was chosen 

to provide at least 10 samples per wavelength up through 15 GHz. 
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Evaluation tests  

 

1. Differential Equations (3D to 1D) 

Starting with Maxwell’s equations in the time domain (Ampere’s and Faraday’s laws eq. 1.1), 

differential form, write the 6 coupled differential equations. (Take the cross products and equate 

vector components.) Convert these equations to the 1-dimensional TE-to-z case by setting d/dy = 

d/dz = 0 and Ez = 0. This represents a plane wave propagating in the x-direction. You should end 

up with equations for Ey and Hz. (The TM-to-z case would have similar equations for Ez and 

Hy.) Compare the result with eq.1.2. 

2. FDTD Equations (1D TE-to-z case) 

Convert the 1D TE differential equations above to their FDTD difference form. (Use the central 

difference formula to approximate the derivatives, and solve for Ey
n+1

 and Hz
n+1/2

 . ) 

Use the 1D FDTD lattice shown below: 

 

Let the E fields be defined at times n, n+1, n-1, etc. 

Let the H fields be defined at times n-1/2, n+1/2, etc. 

Compare the result with eq.1.3. 

 

3. Program the FDTD Equations in air (1D TE case) 

Modify the source code fdtd1d.m (written for lossy medium) in order to place a forced 2-GHz 

sinusoidal source in air (sig=0) on Ey at I=inc: Ey(I=inc) = sin(t).  

 

4. Test the FDTD Equations and observe sinusoidal Time Domain Data 

Modify  the source code fdtd1d.m and use freq = 2GHz, dx = wavelength/20, dt = dx/(2c), 

nx=120, inc=60. Look at  Ey and Hz field at all points as a function of time. 

Modify  the source code fdtd1d.m and plot the Ey and Hz fields at points A,B,C,D as a function 

of time for 100 time steps. Give one plot of the four Ey fields, and another of the four Hz fields. 

Store the Ey fields at point C for use in problem 7. 

Plot the Ey field at point D against the analytical value: Ey(x) = sin(t-x), where x is the 

distance from the source. 

 

A is located at I=60, at source 

B is located at I=63, 3 cells from source 

C is located at I=67, 7 cells from source 
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D is located at I=90, 30 cells from source 

 

5. Observe Pulsed Time Domain Data 

Change the source in fdtd1d.m to a raised cosine pulse: 

Ey(inc) = 1-cos(t) , 0<t<1/Fmax 

  0  ,     t >1/Fmax 

Use Fmax = 2GHz, dx = wavelength/20, dt=dx/(2c), nx=120, inc=60. 

Look at the Ey and Hz fields as a function of time along the mesh. 

Plot the Ey fields at points A,B,C,D as a function of time for 100 time steps. 

Eliminate the boundary conditions. If you run more than 120 time steps you will see the waves 

reflect off the ends of the FDTD mesh. 

 

5. Numerical Stability 

Test your sinusoidal wave simulations with several values of dt = S* dx / c to verify the stability 

criterion. For 1D you expect your simulations to become unstable when dt > dx / c (Courant 

factor S>1). 

 

6. Observe Numerical Dispersion 

In fdtd1d.m use the raised cosine pulsed source, Fmax = 2GHz, dt=dx/(2c), nx=220, inc=110. 

Run for 200 time steps. 

Plot the Ey fields as a function of time 30 cells from the source for dx = wavelength/60, 

wavelength/20, wavelenth/10, and wavelength/5. 

Plot the Ey fields 30 cells from the source for the sinusoidal source using dx=wavelength/5 and 

compare  result with the values observed at point D in problem 4. 

 

7. 3D FDTD 

Modify source code fdtd3D_pec.m and change boundary conditions from perfect electric 

conductor (PEC) to perfect magnetic conductor (PMC). 

 

8. Differential Equations (3D to 2D) 

Starting with Maxwell’s equations in the time domain (Ampere’s and Faraday’s laws eq. 1.1), 

differential form, write the 6 coupled differential equations. (Take the cross products and equate 

vector components.) Convert these equations to the 2-dimensional  case by setting d/dz = 0. 

Group Hx, Hy and Ez equations and obtain transverse-magnetic (TM z-polarized) mode 

equations. Group Ex, Ey and Hz equations and obtain transverse-electric (TE z-polarized) mode 

equations.   

 

 

 

9. FDTD equations (2D TE z-polarized) 

Convert the 2D TE differential equations above to their FDTD difference form. Compare with 

the update equations for E and H fields in the source code fdtd2D.m.  

 

10. 2D Scatterer 

Change in the source code fdtd2D.m the metal cylinder with square (size 6x6 cm) dielectric with 

dielectric constant 12. 

 



  

  21 

 

11. 2D PML boundary conditions 

Compare eqs. (3.11) with 2D PML conditions for X direction in the source code fdtd2D.m. Find 

in fdtd2D.m the code for eq. (3.12). 

 

 


