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 Structural colour 

 Nature has always been an invaluable source of inspiration for technological 

progress. Great scientific revolutions were started by the work of men such as Leonardo 

da Vinci and Galileo Galilei, who were able to learn from nature and apply their 

knowledge most effectively. The process of transferring the ingenious solutions evolved 

by some species into engineered devices is now an established and autonomous discipline 

known as biomimetics. Due to advances in the fabrication technologies of nanometer-

scale optical devices, biomimetics has expanded into the field of non-classical optics. 

This gives an opportunity for engineers and zoologists to learn from nature in a mutually 

beneficial partnership. Engineers can draw inspiration from the ways in which Nature 

produces fascinating optical effects and zoologists can apply the quantitative theoretical 

methods developed in optical engineering to understand the phenomenology of their 

specimens. The development of expertise brought about by this interaction has already 

resulted in commercially available products. The surface of some optical discs for data 

storage and certain surface-relief volume phase holograms share the designs and 

functionality of the microstructures found in the eye of moths and on the wings of 

butterflies. 

 Visual appearance is one of the areas in which nature has evolved smart optical 

solutions. Through interference of light reflected or diffracted by minute features, many 

organisms are able to generate structural colour. Different optical effects are generated by 

arrangements of biomaterial on the surface of various organisms. The study of structural 

colour is old. Observations of optical interference effects have been reported by 

illustrious scientists, whose ingenuity has laid the foundations of modern science. In a 

time when the wonders of nanotechnologies were not conceivable, those researchers 

turned to nature and used their intuition to identify, via their phenomenology, optical 

microstructures which they could not possibly see.  

 Hooke [1] in 1665 

when considering the optical 

properties of silverfish 

(Ctenoplisma sp.) observed:  

. . . the appearance of so many 

several shells or shields that 

cover the whole body, every 

one of these shells are covered 

or tiled over with a multitude 

of transparent scales, which, 

from the multiplicity of their 

reflecting surfaces, make the 

whole animal a perfect pearl 

colour.  



 

 Newton dedicated his Second book of Opticks [2] to the optics of thin transparent 

bodies and in one of his propositions he observed:   

[...] The finely 

colour’d Feathers of 

some Birds, and 

particularly those of 

Peacocks Tails, do, in 

the very same part of 

the Feather, appear of 

several Colours in 

several Positions of 

the eye, after the very 

same manner that thin 

Plates were found to 

do [...] and therefore 

their Colours arise 

from the thinness of 

the transparent parts 

of the Feathers; that 

is, from the 

slenderness of the very fine Hairs, or Capillamenta, which grow out of the sides of the 

grosser lateral Branches or Fibres of those Feathers.  

 Acknowledgment of the intrinsic relation between structural colour and the 

interaction of light with microscopic objects emerged in those early days, together with 

the scientists’ new found interest in the phenomena of interference, refraction and 

reflection, and understanding of the nature of light. 

 A wide variety of diffractive structures is found in Nature. These are specialized 

devices functioning as reflectors in most cases, but also as transmitters. Depending on 

their function, they may have different periods, some of sizes smaller than the 

wavelength of the relevant radiation (zero-order structures), or be periodic along two 

directions on the corrugated surface. Colour can also be generated by a three-dimensional 

distribution of dielectric material such as is found in crystal lattices. Extremely regular 

lattices, in fact face-centered cubic crystals of inverted spheres, occur in iridescent 

butterflies.  



 

 Similarly, structural colour is produced by opals, iridescent stones made of 

ordered grains of amorphous silica, 

which have an internal structure periodic in three dimensions. Often the term opalescence 

is used in this case instead of iridescence. Naturally, we expect the relevant interaction 

between light and three-dimensional structures to take place in the inside of the samples, 

but it must be emphasized that this also applies to surface diffractive structures. Even in 

specimens which we regard as surface, one- or two-dimensional structures, the 

electromagnetic field often penetrates deeply inside the periodic arrangement of dielectric 

material and the chromatic effect results from the extension of the waves deep within the 

structure. For this reason, they must be regarded as volume diffractive structures rather 

than surface ones. The cat tapetum or the hair of the sea mouse are examples of systems 

in which the iridescence is the result of interdependent diffraction and interference 

processes. The striking intensity and amazing effects of structural colour in Nature are 

achieved with materials, and control over the geometries, that by some human standards 

would be regarded as rather limited. The occurring contrasts in index of refraction are 

less than 1.83 and therefore only a small reflection can take place at individual 

boundaries between two materials for small angles of incidence. 

 

 Thin films 

 Thin-film optics is the branch of optics that deals with very thin structured layers 

of different materials. In order to exhibit thin-film optics, the thickness of the layers of 

material must be on the order of the wavelengths of visible light (about 500 nm). Layers 

at this scale can have remarkable reflective properties due to light waveinterference and 



the difference in refractive index between the layers, the air, and the substrate. These 

effects alter the way the optic reflects and transmits light. This effect is observable 

in soap bubbles and oil slicks.  

 The iridescent colours of soap bubbles are caused by interfering light waves and 

are determined by the thickness of the film. They are not the same as rainbow colours but 

are the same as the colours in an oil slick on a wet road. 

 As light impinges on the film, some of it is reflected off the outer surface while 

some of it enters the film and reemerges after being reflected back and forth between the 

two surfaces. The total reflection observed is determined by the interference of all these 

reflections. Since each traversal of the film incurs a phase shift proportional to the 

thickness of the film and inversely proportional to the wavelength, the result of the 

interference depends on these two quantities. So at a given thickness, interference is 

constructive for some wavelengths and destructive for others, so that white 

light impinging on the film is reflected with a hue that changes with thickness. 

A change in colour can be observed while the bubble is thinning due to evaporation. 

Thicker walls cancel out red (longer) wavelengths, causing a blue-green reflection. Later, 

thinner walls will cancel out yellow (leaving blue light), then green (leaving magenta), 

then blue (leaving a golden yellow). Finally, when the bubble's wall becomes much 

thinner than the wavelength of visible light, all the waves in the visible region cancel 

each other out and no reflection is visible at all. When this state is observed, the wall is 

thinner than about 25nm, and is probably about to pop. This phenomenon is very useful 

when making or manipulating bubbles as it gives an indication of the bubble's fragility. 

Interference effects also depend upon the angle at which the light strikes the film, an 

effect called iridescence. So, even if the wall of the bubble were of uniform thickness, 

one would still see variations of colour due to curvature and/or movement. However, the 

thickness of the wall is continuously changing as gravity pulls the liquid downwards, so 

bands of colours that move downwards can usually also be observed. 

 
In the diagram above 

a ray of light hits the 

surface at point X. 

Some of the light is 

reflected, but some 

travels through the 

bubble wall and is 

reflected at the other 

side. 

When light directed 

from low index 

material strikes a 

high index material 

(air to film), there is a 

180 degree phase 

 
In this diagram we 

look at two rays of red 

light (rays 1 and 2). 

Both rays are split as 

before and follow two 

possible paths, but we 

are interested only in 

the paths that are 

represented by the 

solid lines. Consider 

the ray emerging at Y. 

It consists of two rays 

on top of one another: 

 
This is similar to the 

previous diagram 

except the wavelength 

is different. This time 

XOY is not an integer 

multiple of the 

wavelength of blue 

light and so ray 1 and 

2 arrive at y out of 

step. The troughs of 

ray 1 line up with the 

humps of ray 2 and 

the two rays cancel 

 
This computed image 

shows the colours 

reflected by a thin 

film of water 

illuminated by 

unpolarized white 

light. The radius is 

proportional to the 

thickness of the film, 

and the polar angle is 

the angle of 

incidence. 



shift just from the 

reflection (a "hard" 

reflection). So the 

film thicknesses 

discussed for red and 

blue light in the 

panels to the right are 

incorrect by half a 

wavelength. 

the bit that went 

through the bubble 

wall for ray 1 and the 

bit that was reflected 

off the outer wall of 

ray 2. Ray one has 

travelled XOY further 

than ray 2. Since 

XOY happens to 

correspond to an 

integer multiple of the 

wavelength of red 

light, the two rays are 

in phase (the humps 

and troughs are 

together). 

each other out. The 

overall effect is that 

no blue light will be 

reflected for this 

thickness of bubble. 

 

 

 

 Anti-reflective coatings  

 Anti-reflective coatings are a type of optical coating applied to the surface of 

lenses and other optical devices to reduce reflection. This improves the efficiency of the 

system since less light is lost. In complex systems such as a telescope, the reduction in 

reflections also improves the contrast of the image by elimination of stray light. This is 

especially important in planetary astronomy. In other applications, the primary benefit is 

the elimination of the reflection itself, such as a coating on eyeglass lenses that makes the 

eyes of the wearer more visible, or a coating to reduce the glint from a covert 

viewer's binoculars or telescopic sight. 

 Many coatings consist of transparent thin film structures with alternating layers of 

contrasting refractive index. Layer thicknesses are chosen to produce destructive 

interference in the beams reflected from the interfaces, and constructive interference in 

the corresponding transmitted beams. This makes the structure's performance change 

with wavelength and incident angle, so that color effects often appear at oblique angles. 

A wavelength range must be specified when designing or ordering such coatings, but 

good performance can often be achieved for a relatively wide range of frequencies: 

usually a choice ofIR, visible, or UV is offered. 

 The simplest form of antireflection coating was discovered by Lord Rayleigh in 

1886. The optical glass available at the time tended to develop a tarnish on its surface 

with age, due to chemical reactions with the environment. Rayleigh tested some old, 

slightly tarnished pieces of glass, and found to his surprise that they 

transmitted more light than new, clean pieces. The tarnish replaces the air-glass interface 

with two interfaces: an air-tarnish interface and a tarnish-glass interface. Because the 

tarnish has an index of refraction between that of glass and that of air, each of these 

interfaces exhibits less reflection than the air-glass interface did, and in fact the total of 

the two reflections is less than that of the "naked" air-glass interface. 



 Interference-based coatings were invented in November 1935 by Alexander 

Smakula, who was working for the Carl Zeiss optics company. Anti-reflection coatings 

were a German military secret until the early stages of World War II. 

 There are two separate causes of optical effects due to coatings, often called thick 

film and thin film effects. Thick film effects arise because of the difference in the index 

of refraction between the layers above and below the coating (or film); in the simplest 

case, these three layers are the air, the coating, and the glass. Thick film coatings do not 

depend on how thick the coating is, so long as the coating is much thicker than a 

wavelength of light. Thin film effects arise when the thickness of the coating is 

approximately the same as a quarter or a half a wavelength of light. In this case, the 

reflections of a steady source of light can be made to add destructively, and hence reduce 

reflections by a separate mechanism. In addition to depending very much on the thickness 

of the film, and the wavelength of light, thin film coatings depend on the angle at which 

the light strikes the coated surface. 

 

 Reflection 

 Whenever a ray of light moves from one medium to another (for example, when 

light enters a sheet of glass after travelling through air), some portion of the light is 

reflected from the surface (known as the interface) between the two media. This can be 

observed when looking through awindow, for instance, where a (weak) reflection from 

the front and back surfaces of the window glass can be seen. The strength of the 

reflection depends on the refractive indices of the two media as well as the angle of the 

surface to the beam of light. The exact value can be calculated using the Fresnel 

equations. 

When the light meets the interface at normal incidence (perpendicularly to the surface), 

the intensity of light reflected is given by the reflection coefficient or reflectance, R: 

, 

where no  and ns  are the refractive indices of the first and second media, respectively. 

The value of R varies from 0.0 (no reflection) to 1.0 (all light reflected) and is usually 

quoted as a percentage. Complementary to R is the transmission 

coefficient or transmittance, T. If absorption and scattering are neglected, then the 

value T is always 1–R. Thus if a beam of light with intensity I is incident on the surface, 

a beam of intensity RI is reflected, and a beam with intensity TI is transmitted into the 

medium. 

 For the simplified scenario of visible 

light travelling from air (n0 ≈1.0) into common 

glass (ns ≈1.5), value of R is 0.04, or 4% on a 

single reflection. So at most 96% of the light 

(T=1–R=0.96) actually enters the glass, and the 

rest is reflected from the surface. The amount of 

light reflected is known as the reflection loss. 

 In the more complicated scenario of 

multiple reflections, say with light travelling 

through a window, light is reflected both when 

going from air to glass and at the other side of 



the window when going from glass back to air. The size of the loss is the same in both 

cases. Light also may bounce from one surface to another multiple times, being partially 

reflected and partially transmitted each time it does so. In all, the combined reflection 

coefficient is given by 2R/(1+R). For glass in air, this is about 7.7%.) 

 

 Rayleigh's film 

 As observed by Lord Rayleigh, a thin film (such as tarnish) on the surface of glass 

can reduce the reflectivity. This effect can be explained by envisioning a thin layer of 

material with refractive index n1 between the air (index n0) and the glass (index nS). The 

light ray now reflects twice: once from the surface between air and the thin layer, and 

once from the layer-to-glass interface. 

 From the equation above, and the known refractive indices, reflectivities for both 

interfaces can be calculated, and denoted R01 and R1S, respectively. The transmission at 

each interface is therefore T01 = 1-R01 and T1S = 1-R1S. The total transmitance into the 

glass is thusT1ST01. Calculating this value for various values of n1, it can be found that at 

one particular value of optimum refractive index of the layer, the transmittance of both 

interfaces is equal, and this corresponds to the maximum total transmittance into the 

glass. 

This optimum value is given by the geometric mean of the two surrounding indices: 

. 

 For the example of glass (nS≈1.5) in air (n0≈1.0), this optimum refractive index 

is n1≈1.225. The reflection loss of each interface is approximately 1.0% (with a combined 

loss of 2.0%), and an overall transmission T1ST01 of approximately 98%. Therefore an 

intermediate coating between the air and glass can halve the reflection loss. 

 Interference coatings 

 The use of an intermediate layer to form an antireflection coating can be thought 

of as analoguous to the technique of impedance matching of electrical signals. (A similar 

method is used in fibre optic research where an index matching oil is sometimes used to 

temporarily defeat total internal reflection so that light may be coupled into or out of a 

fiber.) Further reduced reflection could in theory be made by extending the process to 

several layers of material, gradually blending the refractive index of each layer between 

the index of the air and the index of the 

substrate. 

 Practical antireflection coatings, 

however, rely on an intermediate layer 

not only for its direct reduction of 

reflection coefficient, but also use 

theinterference effect of a thin layer. 

Assume the layer thickness is 

controlled precisely, such that it is 

exactly one quarter of the light's 

wavelength thick (λ/4). The layer is 

then called a quarter-wave coating. For 

this type of coating the incident beam I, 

when reflected from the second 

interface, will travel exactly half its 



own wavelength further than the beam reflected from the first surface. If the intensities of 

the two beams  R1 and R2 are exactly equal, they will destructively interfere and cancel 

each other since they are exactly out of phase. Therefore, there is no reflection from the 

surface, and all the energy of the beam must be in the transmitted ray, T. In the 

calculation of the reflection from a stack of layers, the transfer-matrix method can be 

used. 

 Real coatings do not reach perfect performance, though they are capable of 

reducing a surface's reflection coefficient to less than 0.1%. Practical details include 

correct calculation of the layer thickness; since the wavelength of the light is reduced 

inside a medium, this thickness will be λ0 / 4n1, where λ0 is the vacuum wavelength. 

Also, the layer will be the ideal thickness for only one distinct wavelength of light. Other 

difficulties include finding suitable materials for use on ordinary glass, since few useful 

substances have the required refractive index (n≈1.23) which will make both reflected 

rays exactly equal in intensity. Magnesium fluoride (MgF2) is often used, since this is 

hard-wearing and can be easily applied to substrates using physical vapour deposition, 

even though its index is higher than desirable (n=1.38). 

 Further reduction is possible by using multiple coating layers, designed such that 

reflections from the surfaces undergo maximum destructive interference. One way to do 

this is to add a second quarter-wave thick higher-index layer between the low-index layer 

and the substrate. The reflection from all three interfaces produces destructive 

interference and antireflection. Other techniques use varying thicknesses of the coatings. 

By using two or more layers, each of a material chosen to give the best possible match of 

the desired refractive index and dispersion, broadband antireflection coatings which 

cover the visible range (400-700 nm) with maximum reflectivities of less than 0.5% are 

commonly achievable. 

 The exact nature of the coating determines the appearance of the coated optic; 

common AR coatings on eyeglasses and photographic lenses often look somewhat bluish 

(since they reflect slightly more blue light than other visible wavelengths), though green 

and pink-tinged coatings are also used. 

 If the coated optic is used at non-normal incidence (that is, with light rays not 

perpendicular to the surface), the antireflection capabilities are degraded somewhat. This 

occurs because the phase accumulated in the layer relative to the phase of the light 

immediately reflected decreases as the angle increases from normal. This is 

counterintuitive, since the ray experiences a greater total phase shift in the layer than for 

normal incidence. This paradox is resolved by noting that the ray will exit the layer 

spatially offset from where it entered, and will interfere with reflections from incoming 

rays that had to travel further (thus accumulating more phase of their own) to arrive at the 

inteface. The net effect is that the relative phase is actually reduced, shifting the coating, 

such that the anti-reflection band of the coating tends to move to shorter wavelengths as 

the optic is tilted. Non-normal incidence angles also usually cause the reflection to 

be polarization dependent. 

 

 Photonic crystals 

 Photonic crystals are composed of periodic dielectric or metallo-

dielectric nanostructures that affect the propagation of electromagnetic waves (EM) in the 

same way as the periodic potential in a semiconductor crystal affects the electron motion 



by defining allowed and forbidden electronic energy bands. Essentially, photonic crystals 

contain regularly repeating internal regions of high and low dielectric constant. Photons 

(behaving as waves) propagate through this structure - or not - depending on their 

wavelength. Wavelengths of light that are allowed to travel are known as modes, and 

groups of allowed modes form bands. Disallowed bands of wavelengths are called 

photonic band gaps. This gives rise to distinct optical phenomena such as inhibition 

of spontaneous emission, high-reflecting omni-directional mirrors and low-loss-

waveguiding, amongst others. Since the basic physical phenomenon is based 

on diffraction, the periodicity of the photonic crystal structure has to be of the same 

length-scale as half the wavelength of the EM waves i.e. ~200 nm (blue) to 350 nm (red) 

for photonic crystals operating in the visible part of the spectrum - the repeating regions 

of high and low dielectric constants have to be of this dimension. This makes the 

fabrication of optical photonic crystals cumbersome and complex. 

 The exploitation of electronic crystals has been one of the most important 

revolutions in the history of engineering and has driven the development of modern 

physics as we know it. The quantum theories explaining the mechanics of electrons in 

different materials have been a source of inspiration for scientists investigating the 

interaction between photons and matter. Interest in controlling material radiation has 

resulted in the conception of a new class of materials capable of interacting with 

electromagnetic waves at a structural level: they are called photonic crystals or photonic 

bandgap materials. 

 

 History of photonic crystals 

 Although photonic crystals have been studied in one form or another since 1887, 

the term “photonic crystal” was first used over 100 years later, after Eli 

Yablonovitch and Sajeev John published two milestone papers on photonic crystals in 

1987. Before 1987, one-dimensional photonic crystals in the form of periodic multi-

layers dielectric stacks (such as the Bragg mirror) were studied extensively. Lord 

Rayleigh started their study in 1887, by showing that such systems have a one-

dimensional photonic band-gap, a spectral range of large reflectivity, known as a stop-

band. Today, such structures are used in a diverse range of applications; from reflective 

coatings to enhancing the efficiency of LEDs to highly reflective mirrors in certain laser 

cavities.  

 Purcell in 1946 indicated that spontaneous emission of radio waves from nuclear 

spin levels could be controlled by a dispersion of small metallic particles in a nuclear-

magnetic material, which would create a resonant oscillator. In 1972 Bykov considered 

that spontaneous emission of atoms at optical wavelengths could be reduced by placing 

them in a periodic lattice of dielectrics with pitches smaller than the radiation 

wavelength, thus avoiding decay of excited states through the presence of opaque bands 

for the transition radiation and consequent generation of a dynamic state. Bykov also 

speculated as to what could happen if two- or three-dimensional periodic optical 

structures were used. However, these ideas did not take off until after the publication of 

two milestone papers in 1987 by Yablonovitch and John. Both these papers concerned 

high dimensional periodic optical structures – photonic crystals. Yablonovitch’s main 

motivation was to engineer the photonic density of states, in order to control 

the spontaneous emission of materials embedded within the photonic crystal; John’s idea 



was to use photonic crystals to affect the localisation and control of light. Both these 

works addressed the engineering of a structured material exhibiting ranges of frequencies 

at which the propagation of electromagnetic waves is not allowed, so called bandgaps, 

and their employment in the emission control of optically active materials. 

 After 1987, the number of research papers concerning photonic crystals began to 

grow exponentially. However, due to the difficulty of actually fabricating these structures 

at optical scales, early studies were either theoretical or in the microwave regime, where 

photonic crystals can be built on the far more readily accessible centimetre scale. (This 

fact is due to a property of the electromagnetic fields known as scale invariance – in 

essence, the electromagnetic fields, as the solutions to Maxwell's equations, has no 

natural length scale, and so solutions for centimetre scale structure at microwave 

frequencies are the same as for nanometre scale structures at optical frequencies.) By 

1991, Yablonovitch had demonstrated the first three-dimensional photonic band-gap in 

the microwave regime. In 1996, Thomas Krauss made the first demonstration of a two-

dimensional photonic crystal at optical wavelengths. This opened up the way for photonic 

crystals to be fabricated in semiconductor materials by borrowing the methods used in the 

semiconductor industry. Today, such techniques use photonic crystal slabs, which are two 

dimensional photonic crystals “etched” into slabs of semiconductor; total internal 

reflection confines light to the slab, and allows photonic crystal effects, such as 

engineering the photonic dispersion to be used in the slab. Research is underway around 

the world to use photonic crystal slabs in integrated computer chips, in order to improve 

the optical processing of communications both on-chip and between chips. Although such 

techniques are still to mature into commercial applications, two-dimensional photonic 

crystals have found commercial use in the form of photonic crystal fibres (otherwise 

known as holey fibres, because of the air holes that run through them). Photonic crystal 

fibres were first developed by Philip Russell in 1998, and can be designed to possess 

enhanced properties over (normal) optical fibres. 
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 Modelling photonic crystals and computing photonic band structure 

 Photonic crystals are essentially bulk materials, because the occurrence of the 

bandgap depends, amongst other things, on the modulation of the index of refraction over 

a large number of periods. The search for efficient bandgap materials has prompted 

scientists to solve Maxwell ’s equations within the periodic arrangement. 

 The photonic band gap (PBG) is essentially the gap between the air-line and the 

dielectric-line in the dispersion relation of the PBG system. To design photonic crystal 



systems, it is essential to engineer the location and size of the bandgap; this is done by 

computational modeling using any of the following methods: 

 Transfer-matrix method  

 Plane wave expansion method. 

 Finite Difference Time Domain method 

 

 

 

 

 

 Transfer matrix method (TMM) 

 A multilayer is a stack of homogeneous thin-films with different indices of 

refraction and is usually modelled assuming that the arrangement of dielectric materials 

be invariant with respect to continuous translation in two orthogonal directions and not in 

the third. 

 The optical theory of thin-films was first presented in 1949 by Schuster [1]. The 

following year, Abel`es [2] extended it to multilayers and formalized the computing 

technique called the transfer matrix method (TMM). The basic formalism yields the 

amplitude of the electromagnetic field of monochromatic waves reflected by and 

transmitted through the mentioned structure. The solution is achieved through 

propagation of the fields in the homogeneous layers, and the continuity of the tangential 

components of the electric and magnetic fields at the interfaces. Although the structure is 

onedimensional, propagation for non-normal incidence can be accounted for. The 

solutions for plane waves are in fact vectors of the three-dimensional Euclidean space 

propagating in a plane. With the exception of approximations in the chosen model, i.e. 

simplified dimensionality and initial conditions, or neglect of material parameters, this 

analytical method is exact. 

 The optical properties of stacks of thin layers proposed by Hooke and Newton [3, 

4] were confirmed by the TMM calculations, showing that multilayers are characterised 

by high reflectivity and transmissivity over large portions of the spectrum. Interest in a 

wide variety of important applications of multilayers, including antireflective coatings 

(AR), high reflectivity dielectric mirrors and filters, has prompted scientists to use the 

TMM to compute new designs. It has been demonstrated how to extend the spectral 

region of high reflectance [5], or the range of angles at which the desired effect occurs 

[6], and recent studies have presented the extension of the TMM to stacks of anisotropic 

materials [7,8], showing how to obtain an omnidirectional reflector with existing 

materials. The simple form of the TMM equations applied to a periodically stratified 

medium [9] is convenient for systems with a large number of layers, but novel 

developments in the study of periodic structures have offered new approaches for the 

investigation of periodic multilayers. These techniques involve decomposition of the field 

into periodic modes [10], and assume infinitely extended modulations of the index. These 

techniques therefore cannot model effects related to the finiteness of a multilayer or the 

interaction of light at its boundary with the incident medium, but they have proven 

powerful tools to investigate an important property of dielectric stacks: the photonic 

bandgap [11]. 



 Pendry et al. [12] suggested an approximative finite-element method (FEM) to 

solve Maxwell ’s equations over a discrete mesh of points in a simple cubic lattice. For a 

fixed frequency Pendry et al. propagated fields in one of the orthogonal directions of the 

lattice by means of an approximate wave vector and, assuming a periodic distribution, 

Pendry et al. applied periodic boundary conditions in the planes normal to the 

propagation direction. This resulted in a two-dimensional transfer matrix method (TMM) 

for the real space fields, which was successively upgraded to its Fourier-space form, to 

work in the resonance domain of frequencies, and was capable of fast and accurate 

calculation of the response of complex periodic structures [13,14]. 
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 Plane wave method (PWM) 

 Gratings have been the object of intense study ever since 18th century scientists 

comprehended their usefulness in optics. A grating is traditionally an evenly spaced array 

of straight grooves on a planar surface, and is modelled as a distribution of material 

(dielectric or not) periodic in one direction and invariant with respect to continuous 



translation in the other. However, surface distributions periodic in two directions, found 

in Nature and which have also been fabricated, are often equally referred to as gratings. 

With gratings, the ratio between the wavelength of the interacting light and the size of 

their features is a crucial quantity when modelling them. Depending on the wavelength-

to-pitch and wavelength-to-depth ratios of an array of diffractive elements, differing 

computing techniques must be adopted. Gratings with large pitches compared to the 

operating wavelength are called coarse, while those with a small depth-to-period ratio are 

termed shallow. 

 The scalar theory for diffraction gratings developed by Kirchhoff in the 19th 

century [1] has been a very successful one, but it is accurate only for coarse and shallow 

gratings. Modelling of gratings with large wavelength-to-pitch ratios requires a rigorous 

solution of Maxwell ’s equations. Assuming discrete translational symmetry and 

therefore infinite extension of the modulation, the fields decompose into periodic modes. 

A solution is obtained by expansion in the zone of the periodic distribution of index of 

refraction with periodic functions, and by energy conservation at its boundaries. The 

major difficulty with this method is to find a solution formulation for the scattering 

problem of a single diffraction element, which is also laterally periodic. 

 A method to rigorously obtain the diffraction of plane gratings with rectangular 

diffraction elements, the rigorous modal method (RMM), was proposed by Knop [2]. 

With the RMM, an incoming plane wave is projected onto the Fourier basis functions and 

substituted into the Helmholtz equation. The incident field is separated into its 

components parallel and perpendicular to the plane of incidence and the problems for 

transverse electric (TE) and transverse magnetic (TM) polarisations are solved separately. 

With the simultaneous Fourier expansion of the dielectric function in the periodic 

medium zone, this yields a standard eigenvalue problem. The direction of propagation of 

the modes is obtained from the solution of the eigenvalue problem, the size of which 

depends on the order of truncation in the expansions, and the modes are successively 

propagated in the periodic medium. The tangential components of the fields for all the 

expansion orders are then matched at the boundaries between media (usually the isotropic 

incidence and substrate media, and layers of periodic arrangement of dielectric) and 

finally the amplitudes and phases of the diffracted waves are extracted. Although this 

rigorous technique is in principle applicable to diffractive elements of arbitrary shape, in 

practice the eigenvalue problem can only be obtained for lamellar gratings because of the 

limitation in finding a suitable solution formulation. For both methods, numerical 

instabilities in the solution of the TM problem result in poor convergence and therefore 

poor accuracy. The instabilities are related to the Fourier expansion of the dielectric 

constant and are referred to as Gibbs phenomena. 

 Ho et al. [3] were the first to correctly predict the existence of a complete bandgap 

in a specific photonic crystal structure, i.e. a range of frequencies at which no 

propagation of waves is possible in any direction in the crystal. By means of a plane 

wave expansion method (PWM) they calculated the size of the bandgap for a diamond 

lattice of spheres, and established its dependence upon the dielectric contrast and filling 

fraction parameters. Ho et al. showed that a face-centered cubic lattice of spheres cannot 

have a complete bandgap.  

 The PWM is a three-dimensional version of the Fourier expansion technique 

mentioned when we discussed the rigorous modal method. The same difficulties have to 



be addressed here as in the one-dimensional case of lamellar gratings, namely a solution 

for the single scatterer must be found which is periodic along the crystal axes, and 

numerical instabilities are encountered due to Gibb’s phenomena. Analytical solutions 

are therefore only found for systems composed of spheres in space, and cylindrical or 

rectangular rods in a plane of the crystal. Convergence issues related to Gibb’s 

phenomena are addressed using different expansion bases. Whichever the method of 

expansion used, the total number of terms is determined by the order of the truncation to 

the power of the number of dimensions in the problem. 

 The requirements for computation in terms of storage memory and speed of 

processing grow exponentially with increasing dimensionality of the problem to solve. 

Arbitrarily shaped “atoms” require numerical integration over the unit cell of the crystal, 

which is again very demanding computationally and even places many low dimensional 

problems beyond reach. Nevertheless, advances in this field have produced numerical 

methods which reduce the computational obstacles. By means of iterative optimization of 

an approximative initial solution, through a parallel computing approach via block matrix 

diagonalisation, or implementing ingenuous numerical measures, such as smoothing the 

dielectric function[4], many previously unattainable numerical calculations have been 

successfully solved. 

 The PWM was adapted by Sakoda [5] to compute the diffraction of two-

dimensional periodic bandgap materials with a finite thickness. Using a plane wave 

expansion in the direction of periodicity of the dielectric function and an arbitrary Fourier 

expansion normally to that same plane, diffracted fields were successively matched to the 

field expansions within the periodic medium. Predictions of the diffraction of triangular 

and square lattices of air rods in planar waveguides were obtained in this way with good 

accuracy [6,7]. 
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 Finite-difference time-domain (FDTD) 



 Another method to solve Maxwell ’s equations on a discrete lattice of points in 

space is the finite-difference time-domain (FDTD) method. This method has a long 

history and has been used in a variety of applications which are reviewed in the book 

edited by Taflove [1]. In 1995 Chan et al. [2] were the first to apply this method to 

compute the band structure of photonic crystals and to prove its reliability in treating 

periodic structures of high complexity. The FDTD calculations are particularly useful for 

complicated structures because the memory and processing time requirements scale 

linearly with the number of grid-points included in the computation, allowing resolution 

of minute and intricate structures. With the FDTD method an initial field is propagated 

applying the governing equations in a first-order differential form, both in space and 

time, at all points in the grid in a succession of time steps. Different types of boundary 

conditions can be applied including periodic ones, particularly useful for this type of 

system. The fields at selected points on the grid are finally Fourier-transformed from the 

time to the frequency domain such that observations on spectral content can be made. 

Ward and Pendry [3] extended the FDTD method to nonorthogonal meshes, proved that 

the approximation of the equations conserves energy just as the original ones, and 

showed how to obtain the Green’s function of a system. The FDTD method allows 

solution of the governing equations inside a periodic structure, but also outside at the 

same time, offering a tool to study the coupling of waves between different media or 

devices, and the diffraction or scattering of light. 
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 More on Finite-difference time-domain method 

 Finite-difference time-domain (FDTD) is a popular computational 

electrodynamics modeling technique. It is considered easy to understand and easy to 

implement in software. Since it is a time-domain method, solutions can cover a wide 

frequency range with a single simulation run. 

 The FDTD method belongs in the general class of grid-based differential time-

domain numerical modeling methods. The time-dependentMaxwell's equations (in partial 

differential form) are discretized using central-difference approximations to the space and 

time partial derivatives. The resulting finite-difference equations are solved in either 

software or hardware in a leapfrog manner: the electric field vector components in a 

volume of space are solved at a given instant in time; then the magnetic field vector 

components in the same spatial volume are solved at the next instant in time; and the 

process is repeated over and over again until the desired transient or steady-state 

electromagnetic field behavior is fully evolved. 

 The basic FDTD space grid and time-stepping algorithm trace back to a seminal 

1966 paper by Kane Yee in IEEE Transactions on Antennas and Propagation (Yee 1966). 

The descriptor "Finite-difference time-domain" and its corresponding "FDTD" acronym 



were originated by Allen Taflove in a 1980 paper in IEEE Transactions on 

Electromagnetic Compatibility (Taflove 1980). See "References" for these and other 

important journal papers in the development of FDTD techniques, as well as relevant 

textbooks and research monographs. 

 Since about 1990, FDTD techniques have emerged as primary means to 

computationally model many scientific and engineering problems dealing 

with electromagnetic wave interactions with material structures. As summarized in 

Taflove & Hagness (2005), current FDTD modeling applications range from near-DC 

(ultralow-frequency geophysics involving the entire Earth-ionosphere waveguide) 

through microwaves (radar signature technology, antennas, wireless communications 

devices, digital interconnects, biomedical imaging/treatment) to visible light (photonic 

crystals, nanoplasmonics, solitons, and biophotonics). In 2006, an estimated 2,000 

FDTD-related publications appeared in the science and engineering literature (see 

"Growth of FDTD publications"). At present, there are at least 27 commercial/proprietary 

FDTD software vendors; 8 free-software/open-source-software FDTD projects; and 2 

freeware/closed-source FDTD projects, some not for commercial use. 

 Workings of the FDTD method 

 When Maxwell's differential equations are examined, it can be seen that the 

change in the E-field in time (the time derivative) is dependent on the change in the H-

field across space (the curl). This results in the basic FDTD time-stepping relation that, at 

any point in space, the updated value of the E-field in time is dependent on the stored 

value of the E-field and the numerical curl of the local distribution of the H-field in space 

(Yee 1966). 

 The H-field is time-stepped in a similar manner. At any point in space, the 

updated value of the H-field in time is dependent on the stored value of the H-field and 

the numerical curl of the local distribution of the E-field in space. Iterating the E-field 

and H-field updates results in a marching-in-time process wherein sampled-data analogs 

of the continuous electromagnetic waves under consideration propagate in a numerical 

grid stored in the computer memory. 

 

 
Illustration of a standard Cartesian Yee cell used for FDTD, about which electric and 

magnetic field vector components are distributed (Yee 1966). Visualized as a 

cubic voxel, the electric field components form the edges of the cube, and the magnetic 

field components form the normals to the faces of the cube. A three-dimensional space 

lattice is comprised of a multiplicity of such Yee cells. An electromagnetic wave 



interaction structure is mapped into the space lattice by assigning appropriate values of 

permittivity to each electric field component, and permeability to each magnetic field 

component. 

 This description holds true for 1-D, 2-D, and 3-D FDTD techniques. When 

multiple dimensions are considered, calculating the numerical curl can become 

complicated. Kane Yee's seminal 1966 paper in IEEE Transactions on Antennas and 

Propagation proposed spatially staggering the vector components of the E-field and H-

field about rectangular unit cells of a Cartesian computational grid so that each E-field 

vector component is located midway between a pair of H-field vector components, and 

conversely. This scheme, now known as a Yee lattice, has proven to be very robust, and 

remains at the core of many current FDTD software constructs (Yee 1966). 

 Furthermore, Yee proposed a leapfrog scheme for marching in time wherein the 

E-field and H-field updates are staggered so that E-field updates are conducted midway 

during each time-step between successive H-field updates, and conversely (Yee 1966). 

On the plus side, this explicit time-stepping scheme avoids the need to solve 

simultaneous equations, and furthermore yields dissipation-free numerical wave 

propagation. On the minus side, this scheme mandates an upper bound on the time-step to 

ensure numerical stability (Taflove & Brodwin 1975). As a result, certain classes of 

simulations can require many thousands of time-steps for completion. 

 Using the FDTD method 

 In order to use FDTD a computational domain must be established. The 

computational domain is simply the physical region over which the simulation will be 

performed. The E and H fields are determined at every point in space within that 

computational domain. The material of each cell within the computational domain must 

be specified. Typically, the material is either free-space (air), metal, ordielectric. Any 

material can be used as long as the permeability, permittivity, and conductivity are 

specified. 

 Once the computational domain and the grid materials are established, a source is 

specified. The source can be an impinging plane wave, a current on a wire, or an applied 

electric field, depending on the application. 

 Since the E and H fields are determined directly, the output of the simulation is 

usually the E or H field at a point or a series of points within the computational domain. 

The simulation evolves the E and H fields forward in time. Processing may be done on 

the E and H fields returned by the simulation. Data processing may also occur while the 

simulation is ongoing. While the FDTD technique computes electromagnetic fields 

within a compact spatial region, scattered and/or radiated far fields can be obtained via 

near-to-far-field transformations, as reported originally by Umashankar and Taflove 

(1982). 

 Strengths of FDTD modeling 

 Every modeling technique has strengths and weaknesses, and the FDTD method 

is no different. FDTD is a versatile modeling technique used to solve Maxwell's 

equations. It is intuitive, so users can easily understand how to use it and know what to 

expect from a given model. 

 FDTD is a time-domain technique, and when a broadband pulse (such as a 

Gaussian pulse) is used as the source, then the response of the system over a wide range 

of frequencies can be obtained with a single simulation. This is useful in applications 



where resonant frequencies are not exactly known, or anytime that a broadband result is 

desired. 

 Since FDTD calculates the E and H fields everywhere in the computational 

domain as they evolve in time, it lends itself to providing animated displays of the 

electromagnetic field movement through the model. This type of display is useful in 

understanding what is going on in the model, and to help ensure that the model is 

working correctly. 

 The FDTD technique allows the user to specify the material at all points within 

the computational domain. A wide variety of linear and nonlinear dielectric and magnetic 

materials can be naturally and easily modeled. 

 FDTD allows the effects of apertures to be determined directly. Shielding effects 

can be found, and the fields both inside and outside a structure can be found directly or 

indirectly. 

 FDTD uses the E and H fields directly. Since most EMI/EMC modeling 

applications are interested in the E and H fields, it is convenient that no conversions must 

be made after the simulation has run to get these values. 

 Weaknesses of FDTD modeling 

 Since FDTD requires that the entire computational domain be gridded, and the 

grid spatial discretization must be sufficiently fine to resolve both the smallest 

electromagnetic wavelength and the smallest geometrical feature in the model, very large 

computational domains can be developed, which results in very long solution times. 

Models with long, thin features, (like wires) are difficult to model in FDTD because of 

the excessively large computational domain required. 

 FDTD finds the E/H fields directly everywhere in the computational domain. If 

the field values at some distance are desired, it is likely that this distance will force the 

computational domain to be excessively large. Far-field extensions are available for 

FDTD, but require some amount of postprocessing (Taflove & Hagness 2005). 

 Since FDTD simulations calculate the E and H fields at all points within the 

computational domain, the computational domain must be finite to permit its residence in 

the computer memory. In many cases this is achieved by inserting artificial boundaries 

into the simulation space. Care must be taken to minimize errors introduced by such 

boundaries. There are a number of available highly effective absorbing boundary 

conditions (ABCs) to simulate an infinite unbounded computational domain (Taflove & 

Hagness 2005). Most modern FDTD implementations instead use a special absorbing 

"material", called a perfectly matched layer (PML) to implement absorbing boundaries 

(Berenger 1994, Gedney 1996). 

 Because FDTD is solved by propagating the fields forward in the time domain, 

the electromagnetic time response of the medium must be modeled explicitly. For an 

arbitrary response, this involves a computationally expensive time convolution, although 

in most cases the time response of the medium (or Dispersion (optics)) can be adequately 

and simply modeled using either the recursive convolution (RC) technique, the auxiliary 

differential equation (ADE) technique, or the Z-transform technique. An alternative way 

of solving Maxwell's equations that can treat arbitrary dispersion easily is the 

Pseudospectral Spatial-Domain method (PSSD), which instead propagates the fields 

forward in space. 

 



Transfer-matrix method  

 

 Fresnel equations 

 The Fresnel equations, deduced by Augustin-Jean Fresnel, describe the behaviour 

of light when moving between media of differing refractive indices.  

When light moves from a medium of a given refractive index n1 into a second medium 

with refractive index n2 , both reflection and refraction of the light may occur. 

In the diagram on the right, an incident 

light ray PO strikes at point O the interface 

between two media of refractive 

indexes n1 and n2. Part of the ray is 

reflected as rayOQ and part refracted as 

ray OS. The angles that the incident, 

reflected and refracted rays make to 

the normal of the interface are given as θi, 

θr and θt, respectively. The relationship 

between these angles is given by the law 

of reflection and Snell's law. 

 The fraction of the 

incident power that is reflected from the interface is given by the reflection coefficient R, 

and the fraction that is refracted is given by the transmission coefficient T. The media are 

assumed to be non-magnetic. 

 The calculations of R and T depend on polarisation of the incident ray. If the light 

is polarised with the electric field of the light perpendicular to the plane of the diagram 

above (s-polarised), the reflection coefficient is given by: 

 

where θt can be derived from θi by Snell's law and is simplified using trigonometric 

identities. 

If the incident light is polarised in the plane of the diagram (p-polarised), the R is given 

by: 

 

The transmission coefficient in each case is given by Ts = 1 − Rs and Tp = 1 − Rp. 

If the incident light is unpolarised (containing an equal mix of s- and p-polarisations), the 

reflection coefficient is R =  (Rs + Rp)/2. 

Equations for coefficients corresponding to ratios of the electric field amplitudes of the 

waves can also be derived, and these are also called "Fresnel equations". 



 At one particular angle for a given n1 and n2 , the value of Rp goes to zero and a p-

polarised incident ray is purely refracted. This angle is known as Brewster's angle, and is 

around 56° for a glass medium in air or vacuum. Note that this statement is only true 

when the refractive indexes of both materials are real numbers, as is the case for materials 

like air and glass.  

 For materials that absorb light, like metals andsemiconductors, n is complex, 

and Rp does not generally go to zero. 

 When moving from a denser medium into a less dense one (i.e., n1 > n2 ), above 

an incidence angle known as the critical angle, all light is reflected and Rs = Rp = 1. This 

phenomenon is known as total internal reflection. The critical angle is approximately 41° 

for glass in air. 

 When the light is at near-normal incidence to the interface (θi ≈ θt ≈ 0), the 

reflection and transmission coefficient are given by: 

 

 

 

 

For common glass, the reflection coefficient is about 4%. Note that reflection by a 

window is from the front side as well as the back side, and that some of the light bounces 

back and forth a number of times between the two sides. The combined reflection 

coefficient for this case is 2R/(1 + R), when interference can be neglected. (See below.) 

It should be noted that the discussion given here assumes that the permeability μ is equal 

to the vacuum permeability μo  in both media. This is approximately true for 

most dielectric materials, but not for some other types of material. The completely 

general Fresnel equations are more complicated. 

 

 



 

 

 

 Transfer-matrix method 

 The transfer-matrix method is a method used 

in optics and acoustics to analyze the propagation of 

electromagnetic or acoustic waves through 

a stratified (layered) medium. This is for example 

relevant for the design of anti-reflective 

coatings and dielectric mirrors. 

 The reflection of light from a single interface 

between two media is described by the Fresnel equations. 

However, when there are multiple interfaces, such as in 

the figure, the reflections themselves are also partially reflected. Depending on the exact 

path length, these reflections can interfere destructively or constructively. The overall 

reflection of a layer structure is the sum of an infinite number of reflections, which is 

cumbersome to calculate. 

 The transfer-matrix method is based on the fact that, according to Maxwell's 

equations, there are simple continuity conditions for the electric field across boundaries 

from one medium to the next. If the field is known at the beginning of a layer, the field at 

the end of the layer can be derived from a simple matrixoperation. A stack of layers can 

then be represented as a system matrix, which is the product of the individual layer 

matrices. The final step of the method involves converting the system matrix back into 

reflection and transmission coefficients. 

 Below is described how the transfer matrix is applied to electromagnetic waves 

(for example light) of a given frequency propagating through a stack of layers at normal 

incidence. It can be generalized to deal with incidence at an angle, absorbing media, and 

media with magnetic properties. We assume that the stack layers are normal to the  axis 

and that the field within one layer can be represented as the superposition of a left- and 

right-traveling wave with wave number , 

. 

Because it follows from Maxwell's equation that  and  must be 

continuous across a boundary, it is convenient to represent the field as the 

vector , where 

. 

Since there are two equations relating  and  to  and , these two representations 

are equivalent. In the new representation, propagation over a distance  into the 

positive  direction is described by the matrix 

 
and 

 



Such a matrix can represent propagation through a layer if  is the wave number in the 

medium and  the thickness of the layer: For a system with  layers, each layer  has a 

transfer matrix , where  increases towards higher  values. The system transfer 

matrix is then 

 
Typically, one would like to know the reflectance and transmittance of the layer 

structure. If the layer stack starts at , then for negative , the field is described as 

, 

where  is the amplitude of the incoming wave,  the wave number in the left 

medium, and  is the amplitude (not intensity!) reflectance coefficient of the layer 

structure. On the other side of the layer structure, the field consists of a right-propagating 

transmitted field 

, 

where  is the amplitude transmittance and  is the wave number in the rightmost 

medium. If  and , then we can solve 

 
in terms of the matrix elements  of the system matrix  and obtain 

, 

and 

. 

The intensity transmittance and reflectance, which are often of more practical use, 

are  and , respectively. 

 

 Fabry-Pérot interferometer  

 As an illustration, consider a single layer of glass with a refractive index n and 

thickness d suspended in air at a wave number k (in air). In glass, the wave number 

is . The transfer matrix is 

. 

The amplitude reflection coefficient can be simplified to 

. 

This configuration effectively describes a Fabry-Pérot interferometer or etalon: 

for , the reflection vanishes. 

 



 The varying transmission function of an etalon is caused by interference between 

the multiple reflections of light between the two reflecting surfaces. Constructive 

interference occurs if the transmitted beams are in phase, and this corresponds to a high-

transmission peak of the etalon. If the transmitted beams are out-of-phase, destructive 

interference occurs and this corresponds to a transmission minimum. Whether the 

multiply-reflected beams are in-phase or not depends on the wavelength (λ) of the light 

(in vacuum), the angle the light travels through the etalon (θ), the thickness of the etalon 

(l) and the refractive index of the material between the reflecting surfaces (n). 

The phase difference between each succeeding reflection is given by δ: 

 
If both surfaces have a reflectance R, the transmittance function of the etalon is given by: 

 

where  is the coefficient of finesse. 

 

 

 The transmission of an 

etalon as a function of 

wavelength. A high-finesse 

etalon (red line) shows sharper 

peaks and lower transmission 

minima than a low-finesse etalon 

(blue). 

 Maximum transmission 

(Te = 1) occurs when the optical 

path length difference (2nl cos θ) 

between each transmitted beam 

is an integer multiple of the 

wavelength. In the absence of 

absorption, the reflectance of the etalon Reis the complement of the transmittance, such 

that Te + Re = 1. The maximum reflectivity is given by: 

 
and this occurs when the path-length difference is equal to half an odd multiple of the 

wavelength. 

 The wavelength separation between adjacent transmission peaks is called the free 

spectral range (FSR) of the etalon, Δλ, and is given by: 

 



where λ0 is the central wavelength of the nearest transmission peak. The FSR is related to 

the full-width half-maximum, δλ, of any one transmission band by a quantity known as 

the finesse: 

. 

This is commonly approximated (for R > 0.5) by 

 
 Etalons with high finesse show sharper transmission peaks with lower minimum 

transmission coefficients. 

 A Fabry-Pérot interferometer differs from a Fabry-Pérot etalon in the fact that the 

distance l between the plates can be tuned in order to change the wavelengths at which 

transmission peaks occur in the interferometer. Due to the angle dependence of the 

transmission, the peaks can also be shifted by rotating the etalon with respect to the 

beam.  

 Fabry-Pérot interferometers or etalons are used 

in optical modems,spectroscopy, lasers, and astronomy. 

 

 Detailed analysis 

 Two beams are shown in the 

diagram at the right, one of which 

(T0) is transmitted through the 

etalon, and the other of which (T1) is 

reflected twice before being 

transmitted. At each reflection, the 

amplitude is reduced by  and the 

phase is shifted by π, while at each 

transmission through an interface the 

amplitude is reduced by . 

Assuming no absorption, we have 

by conservation of energy T + R = 1. 

Definen as the index of refraction 

inside the etalon, and n0 as the index 

of refraction outside the etalon. 

Using phasors to represent the 

amplitude of the radiation, let's 

suppose that the amplitude at 

point a is unity. The amplitude at point b will then be 

 
where k = 2πn / λ is the wave number inside the etalon and λ is the vacuum wavelength. 

At point c the amplitude will be 

 
 The total amplitude of both beams will be the sum of the amplitudes of the two 

beams measured along a line perpendicular to the direction of the beam. We therefore 



add the amplitude at point b to an amplitude T1 equal in magnitude to the amplitude at 

point c, but which has been retarded in phase by an amount k0l0 where k0 = 2πn0 / λ is 

the wave number outside of the etalon. Thus: 

 
where l0 is seen to be: 

 
Neglecting the 2π phase change due to the two reflections, we have for the phase 

difference between the two beams 

 
The relationship between θ and θ0 is given by Snell's law: 

 
So that the phase difference may be written 

 
To within a constant multiplicative phase factor, the amplitude of the m-th transmitted 

beam can be written as 

 
The total transmitted beam is the sum of all individual beams 

 
The series is a geometric series whose sum can be expressed analytically. The amplitude 

can be rewritten as 

 

The intensity of the beam will be just  and, since the incident beam was assumed 

to have an intensity of unity, this will also give the transmission function: 

 
 

 

 

 

Transfer matrix 



 

 

 

 

 

Scattering matrix 

 

 

 

 

 

Airy's formulas 

For two systems, the multiplication of two transfer-matrices M13=M12M23  gives: 

 

 



For a homogenous medium of index n and thickness d we have the transfer matrix M: 

 

For two systems separated by a homogenous medium, the multiplication of  transfer-

matrices M13=M12 M M23  gives: 
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Saleh B.E.A.,Teich M.C.Fundamentals of Photonics,  Wiley, 2ed, 2007, chap.7 

http://en.wikipedia.org/wiki/Transfer-matrix_method_(optics)  

http://phys.ubbcluj.ro/~evinteler/nanofotonica/TTM_Sernelius.pdf 

http://www.ifm.liu.se/~boser/elma/Lect13.pdf 

 

 

Program Translight and manual written by A.Reynolds 

http://phys.ubbcluj.ro/~evinteler/nanofotonica/translight_manual_Reynolds.pdf 

http://phys.ubbcluj.ro/~evinteler/nanofotonica/programs 

 

 

 

 

 

 

Based on Saleh B.E.A.,Teich M.C.Fundamentals of Photonics,  Wiley, 2ed, 2007,chap.7 

Evaluation tests  

1. Homogenuos medium 

For a homogenous medium of index n and thickness d show that the transfer matrix M is: 

Hint: Use the definition of scattering matrix S and determine the reflection and 

transmission coefficients with Fresnel equations.  

 

2. Single Dielectric Boundary 

Show that at the boundary between two media of refractive indexes n1 and n2 the 

scattering and transfer matrix is: 

 

3. Propagation Followed by a Boundary 

Show that for a homogeneous medium followed by the boundary between two media of 

refractive indexes n1 and n2 the scattering and transfer matrix is: 



 

4. Propagation Followed by Transmission Through a Slab. 

Show that for a two homogeneous media with refractive indexes n1 and n2 and 

thicknesses d1 and d2  the transfer matrix is: 

 

where: 

and transmission coeficient is: 

Hint: Use the relation between the scattering and transfer matrices. 

 

5. Single Dielectric Boundary. Oblique TE and TM waves 

Show that a wave transmitted through a  planar boundary between media of refractive 

indexes n1 and n2 at angles θ1 and θ2, satisfying Snell's  law (n1 sin θ1 =n2 sin θ2), is 

described by a scattering and transfer matrix determined from the Fresnel equations:  

 

6. Off-axis Propagation Followed by Transmission Through a Slab. 

Show that for a slab with thickness d and refractive indexes n2 between two 

homogeneous media with refractive index n1, the transfer matrix is: 



where for TE waves, respectively TM waves we have: 

 

 

7. Mirror Fabry-Perot etalon  

Consider two lossless partially reflective mirrors with amplitude transmittances t1 and  

t2 and amplitude reflectances r1 and r2  separated by a distance d  filled with a medium  

of refractive index n. Show that for the overall system the transfer matrix is:  

 

Using this result show that the intensity transmittance is: 

where: 

 

For two identical mirrors with reflectance R= | r1 | 2 = | r2 | 2 show that we have: 

 

where: 

 
 

8. Bragg grating 

For a system composed from N identical modules with transfer matrix Mo 

show that the overall  transfer matrix MN =MoN  is: 

 



Hint: Use the unimodularity of matrix Mo (det Mo=1). 

Using the fact that: 

 

show that intensity transmittance and reflectance is:  

In the limit for the reflectance of a single module  show that: 

 

 

9. Periodic medium 

For a periodic medium composed of identical modules described by transfer matrix Mo 

 

we have the eigenmodes that satisfy relation: 

For m=0 we have the eigenvalue problem: 

Show that we have (use the form of Mo from previous problem): 



Hint: Use relations: 

 

10. 1D photonic crystal: Alternating dielectric layers 

Show that for the system in the figure we have the following dispersion relation: 

where: 

 

Plot dispersion relation in coordinates K,ω and show that we have photonic bandgaps 

around frequency values m*ωB : 

 



 

Hint: Use the relation obtained in the previous problem: 

 

and replace transmission t obtained from problem 4 (Propagation Followed by 

Transmission Through a Slab) by phases: 

 

 

 


