
MODUL 1 – INTRODUCTION TO NANOPHOTONICS, TRANSFER MATRIX 

METHOD 

 

Based on Saleh B.E.A.,Teich M.C.Fundamentals of Photonics,  Wiley, 2ed, 2007,chap.7 

Evaluation tests  

1. Homogenuos medium 

For a homogenous medium of index n and thickness d show that the transfer matrix M is: 

Hint: Use the definition of scattering matrix S and determine the reflection and 

transmission coefficients with Fresnel equations.  

 

2. Single Dielectric Boundary 

Show that at the boundary between two media of refractive indexes n1 and n2 the 

scattering and transfer matrix is: 

 

3. Propagation Followed by a Boundary 

Show that for a homogeneous medium followed by the boundary between two media of 

refractive indexes n1 and n2 the scattering and transfer matrix is: 

 

4. Propagation Followed by Transmission Through a Slab. 

Show that for a two homogeneous media with refractive indexes n1 and n2 and 

thicknesses d1 and d2  the transfer matrix is: 



 

where: 

and transmission coeficient is: 

Hint: Use the relation between the scattering and transfer matrices. 

 

5. Single Dielectric Boundary. Oblique TE and TM waves 

Show that a wave transmitted through a  planar boundary between media of refractive 

indexes n1 and n2 at angles θ1 and θ2, satisfying Snell's  law (n1 sin θ1 =n2 sin θ2), is 

described by a scattering and transfer matrix determined from the Fresnel equations:  

 

6. Off-axis Propagation Followed by Transmission Through a Slab. 

Show that for a slab with thickness d and refractive indexes n2 between two 

homogeneous media with refractive index n1, the transfer matrix is: 

where for TE waves, respectively TM waves we have: 

 



 

7. Mirror Fabry-Perot etalon  

Consider two lossless partially reflective mirrors with amplitude transmittances t1 and  

t2 and amplitude reflectances r1 and r2  separated by a distance d  filled with a medium  

of refractive index n. Show that for the overall system the transfer matrix is:  

 

Using this result show that the intensity transmittance is: 

where: 

 

For two identical mirrors with reflectance R= | r1 | 2 = | r2 | 2 show that we have: 

 

where: 

 
 

8. Bragg grating 

For a system composed from N identical modules with transfer matrix Mo 

show that the overall  transfer matrix MN =MoN  is: 

 

Hint: Use the unimodularity of matrix Mo (det Mo=1). 

Using the fact that: 



 

show that intensity transmittance and reflectance is:  

In the limit for the reflectance of a single module  show that: 

 

 

9. Periodic medium 

For a periodic medium composed of identical modules described by transfer matrix Mo 

 

we have the eigenmodes that satisfy relation: 

For m=0 we have the eigenvalue problem: 

Show that we have (use the form of Mo from previous problem): 

Hint: Use relations: 

 



10. 1D photonic crystal: Alternating dielectric layers 

Show that for the system in the figure we have the following dispersion relation: 

where: 

 

Plot dispersion relation in coordinates K,ω and show that we have photonic bandgaps 

around frequency values m*ωB : 

 

 



Hint: Use the relation obtained in the previous problem: 

 

and replace transmission t obtained from problem 4 (Propagation Followed by 

Transmission Through a Slab) by phases: 

 

 

MODUL 2   PLANE-WAVE METHOD 

 

 

Evaluation tests  

1.1D photonic crystal 

Using program photo1d3.m obtain the following band structures for 1D photonic crystal 

(from Joannopoulos book p.46). Explain in what conditions appear the band gap.  What 

represent the blue curves? Define the Brillouin zone in this case. 

 

2. Off-plane propagation 

Write PWM equations for TM and TE modes and compare with the code in 

offplane1dte.m and offplane1dtm.m. Using the previous programs plot the band structure 

for TM and TE modes. For which frequencies we have band gaps? Define the Brillouin 

zone in this case. 

 

3. 1D Band structure  



What is plotted with blue and green curves in programs gapkyte1d.m and gapkytm1d.m? 

 

Explain the obtained plots. 

 

4. 2D Brillouin zone. 

Derive lattice vectors for direct (a1,a2) and reciprocal lattice (b1,b2)  in two cases: square 

and triangular lattice. Compare the results with eqs.(23-26).  

Compare the results with the code for  lattice vectors in the programs sqideal2d.m and 

triang2dte.m. 

Take in account that in code the complex plane is used,  instead of usual bidimensional 

real space.  

What represents the variable G in the previous code? 

Using fig.4 plot the Brillouin zone for square and triangular lattice. Compare the frontier 

of the  Brillouin zone with the code for wave vectors k1,k2,k3 in the programs 

sqideal2d.m and triang2dte.m.. 

 

5. 2D Fourier transform of  dielectric constant 

Derive Fourier coefficients of the inverse of dielectric constant (eq. 34) from its 

definition (eq. 31). Write down  for the case of square and triangular lattice (with 

lattice step a) of cylinders with radius R. 

Another derivation of   it is first to calculate Fourier coefficients of dielectric 

constant (which in 2D form a matrix) and after to invert the obtained matrix and get the  

Fourier coefficients of the inverse of dielectric constant. This is the way used in the 

programs sqideal2d.m and triang2dte.m.  

Show that the Fourier transform of dielectric constant is: 



 

For the full lattice G=m1b1+m2b2, replaces k (valid only for the unit cell case) , where 

b1,b2 are the reciprocal lattice vectors. 

Compare the result with the code for matrix eps2(x,y) and eps21 in  triang2dte.m and 

respectively  sqideal2d.m. What represents the coefficient f in the code? 

Hint: look in the PWM manual of Shangping Guo at derivation of equation (42). 

 

6. 2D PWM equation  

From relation (7) (in components in eq.(10)) 

 

 

 

using the Fourier expansion of  inverse of dielectric constant eq.(13) and H field (similar 

to relation 14 for E field) derive PWM equation for H field (similar to relation 39 for E 

field): 

 

Show that the matricial equation reduces to two independent relations for TM and TE 

waves: 

 

for special orientation of polarization vectors of H as in figure. 



 

Compare with the code in programs sqideal2d.m and triang2dte.m. (take in account that 

the matrix M for eigenvalue problem is written in complex plane): 

Hint: look in the PWM manual of Shangping Guo at derivation of equation (31). 

 

7. 2D Eigenvalue problem 

In the programs sqideal2d.m and triang2dte.m we have the code E=sort(abs(eig(M))) that 

sorts the absolute value of eigenvalues of matrix M. Write alternative code for solving  

eigenvalues of matrix M using the Jacobi method. 

 

8. 2D dispersion curves 

Obtain the plots in fig.6 and 7 by modifying the programs triang2dte.m and 

triang2dtm.m. Obtain also dispersion curves for TM modes. Where is located the band 

gap for TE and TM modes?  

 

9. 2D supercell 

Obtain the plot in fig.2.12 by modifying the program sqband.m. What represents the 

straight line in figure 2.12? 

 

10. 3D diamond Brillouin zone. 

Derive lattice vectors for direct (a1,a2,a3) and reciprocal lattice (b1,b2,b3) for diamond 

lattice. Compare the results with the code for  lattice vectors in the program 

diamond3d.m. 

Plot the Brillouin zone for diamond lattice. Compare the frontier of the  Brillouin zone 

with the code for wave vectors k1,k2,k3,k4,k5,k6 in the program diamond3d.m 

Plot the dispersion curves. Where is located the band gap? 

The simulation is one of the hallmarks in the study of photonic band gap structures and 

was first made in the article K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 

65, 3152 (1990). It opened a way for the fabrication of the first photonic structure with a 

complete photonic band gap (CPBG) and advanced the field considerably. One of its 

main conclusions is that, regarding a CPBG, the diamond structure fares much better than 

a simple face-centered-cubic (fcc) one: (i) the threshold value of the di- 

electric contrast ε to open a CPBG is 4 (8.2 for an fcc structure), (ii) a CPBG opens 

between the 2nd and 3rd bands (the 8th-9th bands for an fcc structure), and, 

consequently, is much more stable against disorder, and (iii) a CPBG is signicantly larger 

(15% and 5%, for the respective diamond and fcc closed packed lattice of spheres with a 

dielectric contrast ε  = 12.96). 

 

 

 

 

 



Hint: look in the PWM manual of Shangping Guo at page 21 

 

     

  

  

  

  

  

  

  

   

 

 

 

MODUL 3 FINITE-DIFFERENCE TIME DOMAIN METHOD 

 

 

Evaluation tests  

 

1. Differential Equations (3D to 1D) 

Starting with Maxwell’s equations in the time domain (Ampere’s and Faraday’s laws eq. 

1.1), differential form, write the 6 coupled differential equations. (Take the cross products 

and equate vector components.) Convert these equations to the 1-dimensional TE-to-z 

case by setting d/dy = d/dz = 0 and Ez = 0. This represents a plane wave propagating in 

the x-direction. You should end up with equations for Ey and Hz. (The TM-to-z case 

would have similar equations for Ez and Hy.) Compare the result with eq.1.2. 

2. FDTD Equations (1D TE-to-z case) 

Convert the 1D TE differential equations above to their FDTD difference form. (Use the 

central 

difference formula to approximate the derivatives, and solve for Ey
n+1

 and Hz
n+1/2

 . ) 

Use the 1D FDTD lattice shown below: 



 

Let the E fields be defined at times n, n+1, n-1, etc. 

Let the H fields be defined at times n-1/2, n+1/2, etc. 

Compare the result with eq.1.3. 

 

3. Program the FDTD Equations in air (1D TE case) 

Modify the source code fdtd1d.m (written for lossy medium) in order to place a forced 2-

GHz sinusoidal source in air (sig=0) on Ey at I=inc: Ey(I=inc) = sin(t).  

 

4. Test the FDTD Equations and observe sinusoidal Time Domain Data 

Modify  the source code fdtd1d.m and use freq = 2GHz, dx = wavelength/20, dt = 

dx/(2c), nx=120, inc=60. Look at  Ey and Hz field at all points as a function of time. 

Modify  the source code fdtd1d.m and plot the Ey and Hz fields at points A,B,C,D as a 

function of time for 100 time steps. Give one plot of the four Ey fields, and another of the 

four Hz fields. Store the Ey fields at point C for use in problem 7. 

Plot the Ey field at point D against the analytical value: Ey(x) = sin(t-x), where x is 

the 

distance from the source. 

 

A is located at I=60, at source 

B is located at I=63, 3 cells from source 

C is located at I=67, 7 cells from source 

D is located at I=90, 30 cells from source 

 

5. Observe Pulsed Time Domain Data 

Change the source in fdtd1d.m to a raised cosine pulse: 

Ey(inc) = 1-cos(t) , 0<t<1/Fmax 

  0  ,     t >1/Fmax 

Use Fmax = 2GHz, dx = wavelength/20, dt=dx/(2c), nx=120, inc=60. 

Look at the Ey and Hz fields as a function of time along the mesh. 

Plot the Ey fields at points A,B,C,D as a function of time for 100 time steps. 

Eliminate the boundary conditions. If you run more than 120 time steps you will see the 

waves reflect off the ends of the FDTD mesh. 

 

5. Numerical Stability 



Test your sinusoidal wave simulations with several values of dt = S* dx / c to verify the 

stability criterion. For 1D you expect your simulations to become unstable when dt > dx / 

c (Courant factor S>1). 

 

6. Observe Numerical Dispersion 

In fdtd1d.m use the raised cosine pulsed source, Fmax = 2GHz, dt=dx/(2c), nx=220, 

inc=110. Run for 200 time steps. 

Plot the Ey fields as a function of time 30 cells from the source for dx = wavelength/60, 

wavelength/20, wavelenth/10, and wavelength/5. 

Plot the Ey fields 30 cells from the source for the sinusoidal source using 

dx=wavelength/5 and compare  result with the values observed at point D in problem 4. 

 

7. 3D FDTD 

Modify source code fdtd3D_pec.m and change boundary conditions from perfect electric 

conductor (PEC) to perfect magnetic conductor (PMC). 

 

8. Differential Equations (3D to 2D) 

Starting with Maxwell’s equations in the time domain (Ampere’s and Faraday’s laws eq. 

1.1), differential form, write the 6 coupled differential equations. (Take the cross products 

and equate vector components.) Convert these equations to the 2-dimensional  case by 

setting d/dz = 0. Group Hx, Hy and Ez equations and obtain transverse-magnetic (TM z-

polarized) mode equations. Group Ex, Ey and Hz equations and obtain transverse-electric 

(TE z-polarized) mode equations.   

 

 

 

9. FDTD equations (2D TE z-polarized) 

Convert the 2D TE differential equations above to their FDTD difference form. Compare 

with the update equations for E and H fields in the source code fdtd2D.m.  

 

10. 2D Scatterer 

Change in the source code fdtd2D.m the metal cylinder with square (size 6x6 cm) 

dielectric with dielectric constant 12. 

 

11. 2D PML boundary conditions 

Compare eqs. (3.11) with 2D PML conditions for X direction in the source code 

fdtd2D.m. Find in fdtd2D.m the code for eq. (3.12). 

 


