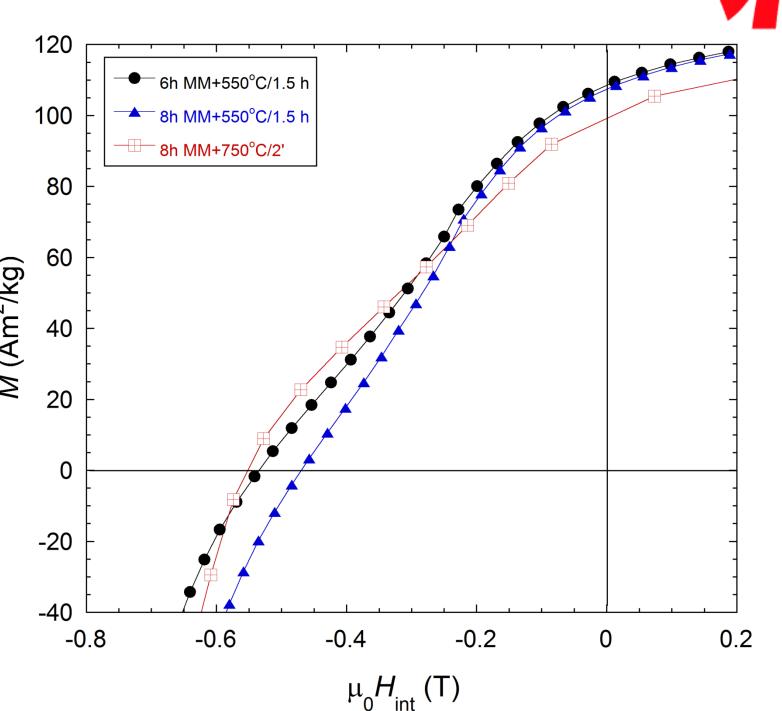


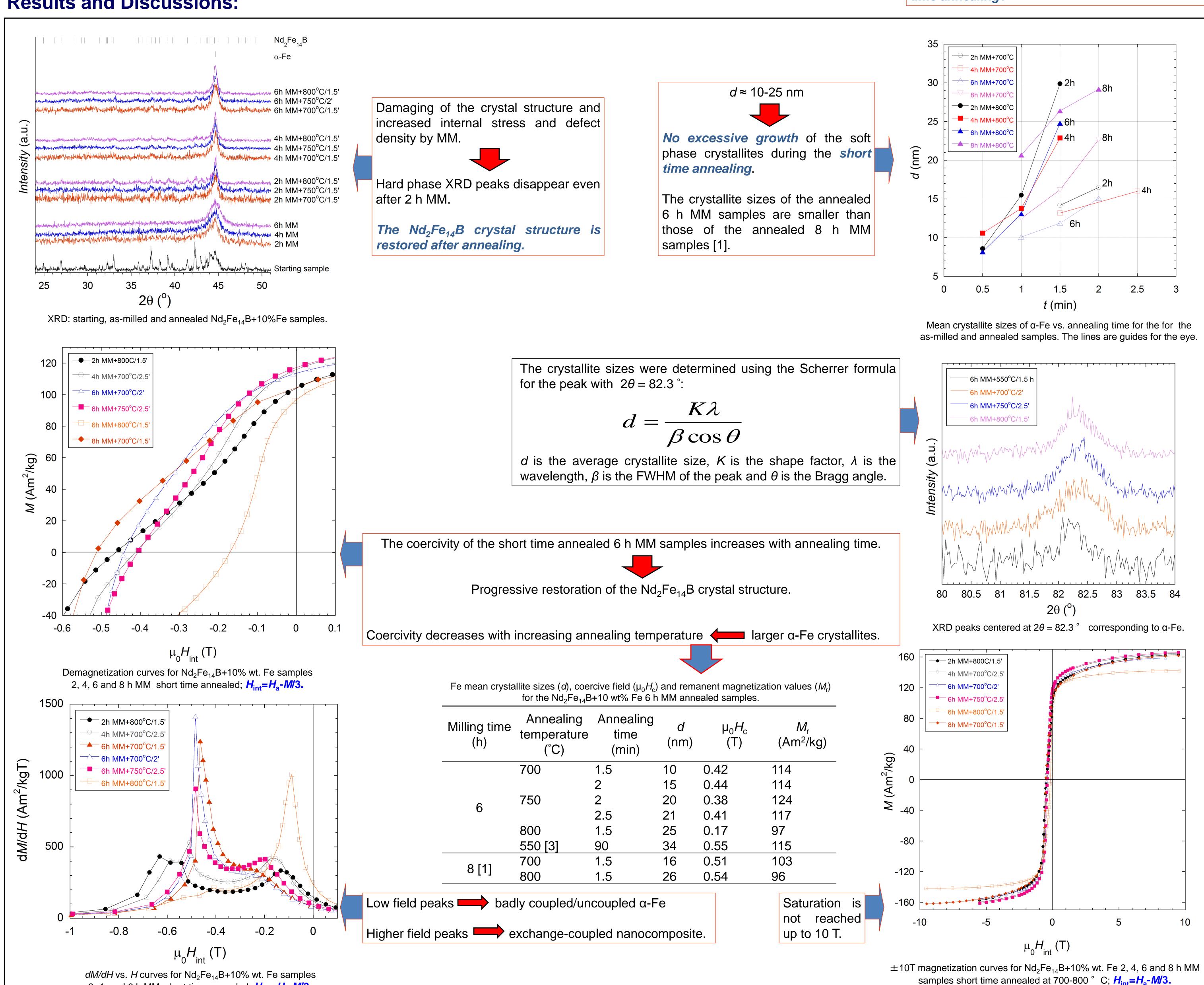
Structural and Magnetic Properties of Nd₂Fe₁₄B/α-Fe Nanocomposites Obtained by Mechanical Milling and Short Time Annealing

S. Mican ¹, R. Hirian ¹, V. Pop ¹, I. Chicinaş ⁴ and O. Isnard ^{2,3}

¹ Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 Romania ² Université Grenoble Alpes, Institut Néel, Grenoble, F-38042 France ³ CNRS, Institut Néel, Grenoble, F-38042 France


⁴ Materials Science and Engineering Department, Technical University of Cluj-Napoca, RO-400641 Romania

Abstract: This study presents the effect of different milling times and short time annealing on the structural and magnetic properties of Nd₂Fe₁₄B/10wt% Fe nanocomposites prepared by high energy ball milling. The XRD peaks of the hard magnetic phase disappear after milling due to the damaging of the Nd₂Fe₁₄B crystal structure. After annealing, the characteristic peaks of the hard magnetic phase are restored with a limited growth of the soft magnetic phase crystallites. The magnetic behavior was investigated from hysteresis curves and dM/dH vs. H plots. The best exchange coupling was obtained for the 6 h milled sample annealed at 700 °C for 2 minutes with a maximum coercive field value of 0.44 T. Taking into account the milling and annealing conditions, the Nd₂Fe₁₄B/α-Fe exchange coupling is analyzed.


Experimental:

- > The Nd₂Fe₁₄B hard phase was prepared by induction melting in an Ar atmosphere, followed by annealing in vacuum at 950 °C for 68 h. The ingot was ground to a fine powder under 500 µm. The soft magnetic phase (12 g of NC 100.24 commercial Fe powder – Höganäs product) was milled with 5 ml benzene for 4 h in an inert Ar atmosphere with a ball to powder weight ratio of 10:1.
- The Nd₂Fe₁₄B powder was mixed with the pre-milled Fe phase in a weight ratio of 90% Nd₂Fe₁₄B/10% Fe. The mixture was dry-milled in Ar for 2, 4 and 6 h respectively with a ball to powder weight ratio of 10:1. The milled samples were annealed in an Ar atmosphere at 700, 750 and 800 °C for 0.5-2.5 min and quenched in water.
- \succ X-Ray diffraction measurements were performed on a Brüker D8 Advance diffractometer using Cu K_a radiation.
- Magnetic measurements were carried out on powder samples fixed in epoxy resin using the extraction method at 300 K in applied fields up to ±10T. Assuming isolated spherical magnetic particles we used a demagnetization factor of 1/3 for magnetic data.

For *classically annealed samples*, the interphase exchange coupling is better after 6 h MM compared to 8 h MM [1,2]. What will happen after short time annealing?

Results and Discussions:

Conclusions:

- > Short time annealing restores the structure of the hard phase destroyed by milling with a limited growth of the soft magnetic crystallites.
- The exchange coupling strength increases with milling time possibly due to smaller soft phase crystallites and a better homogeneity of the mixture.
- The best exchange coupling was obtained for the 6 h MM sample annealed at 700 °C for 2 minutes with a maximum coercive field value of 0.44 T.
- The coercivity of the short time annealed 6 h MM samples is slightly lower than previously reported values on the classically annealed 6 h and short time annealed 8 h MM samples, however, they show a *higher remanence*.
- The diminishing of the coercivity could be attributed to the pre-milling of the soft phase with benzene.

2, 4, and 6 h MM short time annealed; $H_{int} = H_a - M/3$.

Progressive decoupling with increasing annealing

time/temperature.

Increasingly larger soft phase crystallites and

possible phase alterations.