Effect of Milling and Annealing Conditions on the Interphase Exchange Coupling of Nd₂Fe₁₄B/α-Fe Magnetic Nanocomposites

Sever Mican, Răzvan Hirian, <u>Viorel POP</u> Babeș-Bolyai University, Faculty of Physics, 400084 Cluj-Napoca, Romania

Olivier ISNARD Institut Néel, CNRS, Joseph Fourier University, BP 166X, 38042 Grenoble, Cédex 9, France

Ionel CHICINAŞ

Materials Sciences and Engineering Dept., Technical University of Cluj-Napoca, 103-105 Muncii ave., 400641 Cluj-Napoca, Romania

This contribution was supported by the **<u>Romanian Ministry of Education and Research</u>**, Grants:

PN-II-ID-PCE-2012-4-0470, PN-II RU-TE-2011-3-0048

International Workshop on Rare Earth and Future Permanent Magnets and Their Applications REPM, Annapolis 2014

Outline

- Introduction
- Experimental details
- Structure and microstructure
- Inter-phase magnetic coupling
- Conclusions

Outline

• Introduction

- Experimental details
- Structure and microstructure
- Inter-phase magnetic coupling
- Conclusions

Nanophased materials behave differently from their macroscopic counterparts because their characteristic sizes are smaller than the characteristic length scales of physical phenomena occurring in bulk materials.

E. De Lacheisserie (edit.), Magnetisme, Presses Universitaires de Grenoble, 1999.

Theoretical predictions:

Experimental realisations: ?????????

Structure Soft-hard exchange hardness

 $D_{cr} \gg 2d_h$

$$\delta_h = \pi \sqrt{A_h / K_h}$$

 $D_{cr} =$ soft phase critical dimension
 $\delta_h =$ width of domain wall in the hard phase
 A_h and K_h are the exchange and anisotropy constants

Nanocomposites prepared by mechanical milling (MM)

•hard magnetic phases of Nd₂Fe₁₄B

•soft magnetic phases of α -Fe (10 wt%)

Different milling energy: 1. Different milling balls: Φ 10 mm and 15 mm 2. Different milling time: 6 h and 8 h of MM Nanocomposites prepared by mechanical milling (MM)

```
•hard magnetic phases of Nd<sub>2</sub>Fe<sub>14</sub>B
```

•soft magnetic phases of α -Fe (10 wt%)

Outline

- Introduction
- Experimental details
- Structure and microstructure
- Inter-phase magnetic coupling
- Conclusions

Material preparation

milling of the powders in a high energy planetary mill

•heat treatments (temperatures and duration)

Starting materials :

- hard magnetic phases of:
 - **R**₂**Fe**₁₄**B**, ingots prepared by melting
- soft magnetic phases of: Fe NC 100.24 powder (Höganäs), (< 40 μm)

Mechanical milling experiments:

- hard magnetic phases– crushed under 500 μm
- hard + soft magnetic powders– milled in Ar atmosphere for 2 8 h

Annealing:

• short time annealing: in argon/700, 750 or 800 ° C for 0.5 to 3 min.

Some previous studies:

By *Mössbauer spectroscopy* we detected an *inter-diffusion* between the two phases during milling or annealing*

Figure 3. Room temperature Mössbauer spectra of the SmCo₅/Fe powder before milling and after milling for the indicated times. The contribution of the Sm(Co,Fe)₅ phase is displayed.

Figure 4. Evolution with the milling time of (a) the mean hyperfine field of the α -Fe(Co) contribution, (b) the mean isomer shift of the α -Fe(Co) contribution and (c) the relative intensities of the α -Fe(Co) and Sm(Co,Fe)₅ contributions. The lines are guides for the eye.

*J M Le Breton, R Lardé, H Chiron, V Pop, D Givord, O Isnard and I Chicinaş, J. Phys. D: Appl. Phys. 43 (2010) 085001

Atom probe tomography (APT) suggested that the observed Fe/Co *inter-diffusion* is initiated during the milling process and further increased by the annealing treatments.*

Nanoscale analysis of the SmCo₅/Fe powder milled for 8h:

- (a) 3D image of Fe-rich clusters
- (b) Concentration profile through a Fe-rich cluster along the black dashed arrow in panel (a).

*R. Lardé, J-M. Le Breton, A. Maître, D. Ledue, O. Isnard, V. Pop and I. Chicinaş, J. Phys. Chem., 117 (2013) 7801

•X-ray diffraction (XRD)

- •DSC measurements
- •Magnetic measurements

Outline

- Introduction
- Experimental details
- Structure and microstructure
- Inter-phase magnetic coupling
- Conclusions

•The milled powders present poor crystallinity and a high defect density.

•The recrystallization temperature of the soft magnetic phase is smaller than the recrystallization temperature of the hard magnetic phases.

•By annealing we intended to recover the crystallinity of the hard phase and, in the same time, to hinder the growth of Fe crystallites during annealing.

•In order to complete both objectives simultaneously, a good crystallinity for the hard phase and fine crystallite (smaller than 20 nm) for Fe phase, we also investigate the effects of short time annealing (0.5 to 3 min at 700, 750 and 800 ° C) on the structure, microstructure and magnetic properties of the hard/soft Nd₂Fe₁₄B/ α -Fe magnetic composite.

X-ray diffraction

Annealing temperature (°C)	Annealing time (min)	FWHM (°)	D (nm) α-F e		Annealing temperature (°C)	Annealing time (min)	D (nm) α-Fe
	1.0	0.88	12 (±2)		700	1.0	15 (±2)
700	1.5	0.77	14 (±2)			1.5	19 (±2)
	2.0	0.66	16 (±2)			2.0	24 (±2)
	1.0	0.61	17 (±2)		750	1.0	19 (±2)
800	1.5	0.50	21 (±2)			1.5	22 (±2)
	2.0	0.43	25 (±2)			2.0	28 (±2)
550	90	0.40	$26(\pm 2)$		800	1.0	24 (±2)
						1.5	27 (±2)
Í.						2.0	30 (±2)
		when			450	90	14 (±2)
		y (a. u.	Mr MM mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	×.	550	90	26 (±2)
		WWWWW	mm my mmm	l l	650	90	38 (±2)
$\widehat{}$		MMM	Mar Mary Mary		Nd	${}_{2}Fe_{14}B + 22$	% α-Fe
a.	han m	81 E	³² 83 84 2θ angle (deg) 800°C/1min)	V. Pop et al, J. Allo	ys Compd. 581, 821	-827 (2013).
ity (
ens	worth Mar My formation and and and and and and and and and an	and the second state of th	700°C/2min			9/ a Fo	
	would have been and the second	distances and parameters and marked	550°C/1.5h		$\mathbf{u}_{2}\mathbf{F}\mathbf{e}_{14}\mathbf{D}$ + \mathbf{H}	70 u-r e	
No retrieve the second s	Hillowin Hill have a first harden with the	administration of a state of a state of the	as milled				
		on and the second s	HALFe ₁₄ B ingot	1914 1944 		8h	MM
<u> </u>	40 50	60	70 80	90			
20 00	20 a	angle (deg)					

V. Pop, S. Gutoiu, E. Dorolti, O. Isnard, I. Chicinaş, J. Alloys Compd. 509, 9964-9969 (2011)

Different diameters of the milling balls

5

0

0.5

			(\
(h)	(°C)	(min)	(nm)
	700	1.5	10
6		2	15
$(0, 10, \dots)$	750	2	20
(Ø 10 mm)		2.5	21
	800	1.5	25
	700	2	17
6			
(Ø 15 mm)	750	2.5	20
			-
6	550 [10]	90	34
8 [7]	700	1.5	16
0[/]	800	1.5	26

[7] V. Pop, S. Gutoiu, E. Dorolti, O. Isnard, I. Chicinaş, *J. Alloys Compd.*, 509, 2011, 9964.
[10] S. Gutoiu, E. Dorolti, O. Isnard, I. Chicinaş, V. Pop,

1.5

t (min)

2

2.5

J. Optoelectron. Adv. Mater., 12, 2010, 2126.

1

Better crystallinity for 6 h MM

Smaller crystallites for 8 h MM

Outline

- Introduction
- Experimental details
- Structure and microstructure
- Inter-phase magnetic coupling
- Conclusions

Milling time (h)	Annealing temperature (°C)	Annealing time (min)	d (nm)	μ ₀ Η _c (T)	$\frac{M_{\rm r}}{({\rm Am}^2/{\rm kg})}$
	700	1.5	10	0.42	114
6		2	15	0.44	114
(0, 10 mm)	750	2	20	0.38	124
		2.5	21	0.41	117
	800	1.5	25	0.17	97
6	700	2	17	0.48	114
(Ø 15 mm)	750	2.5	20	0.41	117
6	550 [10]	90	34	0.55	115
0 [7]	700	1.5	16	0.51	103
8[/]	800	1.5	26	0.54	96

Different diameters of the milling balls

The filled and empty symbols correspond to the samples milled with \emptyset 10 mm and \emptyset 15 mm balls respectively

> The better crystallinity of the hard magnetic phase (for the less energetic MM) impose a better coupling.

<u>*Different times*</u> of milling = <u>*Different energy*</u> of milling

<u>*Different times*</u> of milling = <u>*Different energy*</u> of milling

Conclusions

- The structure and microstructure have a strong influence on the hard/soft exchange coupling.
- The crystallinity and the anisotropy of hard magnetic phases are strongly influenced by milling.
- The characteristic diffractions peaks of hard magnetic phases are restored during heat treatment. The annealing induces also a refinement of the soft magnetic phase structure
- Lower milling energies increase the coercive field due to a reduced damaging of the hard phase crystal structure.
- Higher milling energies lead to a slight remanence increase due to a higher percentage of Fe present in the milled samples resulting from the Nd₂Fe₁₄B decomposition during milling.
- The hard/soft interphase exchange coupling is more sensitive to the crystallinity of hard phase than to the small variations of the crystallite size of soft phase.

Thank you for your attention

This contribution was supported by the **Romanian Ministry of Education and Research**, Grants:

PN-II-ID-PCE-2012-4-0470, PN-II RU-TE-2011-3-0048