Recent development of rare earth lean permanent magnets

Viorel POP Babeş-Bolyai University, Faculty of Physics, 400084 Cluj-Napoca, Romania

The Scientific research has been conducted by the group of magnetism at UBB

in collaboration with the following teams:

<u>Olivier Isnard</u> Institut Néel , CNRS, Université Joseph Fourier, Grenoble, France

Ionel Chicinas Materials Science and Technology Dept., Technical University of Cluj-Napoca, Romania

<u>Jean Marie Le Breton</u> Groupe de Physique des Matériaux, Université de Rouen, Saint Etienne Du Rouvray, France

<u>Mihaela Văleanu</u> National Institute of Material Physics, P.O. Box MG-7, R-76900 Magurele, Bucharest, Romania

With the financial supported of Romanian Ministry of Education and Research, grant PN-II-ID-PCE-2012-4-0470

Outline

- Introduction
- MnBi magnetic phase
- MnAl magnetic phase
- Nanocomposites magnets=Spring magnets
- Conclusions

Outline

• Introduction

- MnBi magnetic phase
- MnAl magnetic phase
- Nanocomposites magnets=Spring magnets
- Conclusions

devices and for advanced technologies.

- magnetic materials are *critical* components in many devices and for advanced technologies.
- high performance magnet (HPM)/wind generator 1000-1600 kg/MW.
- motors and generators: 2 kg HPM/hybrid electric vehicle-20 million vehicles by 2018.
- ➢ Magnetocaloric applications 4 kg HPM/kW cooling power.

- magnetic materials are *critical* components in many devices and for advanced technologies.
- high performance magnet (HPM)/wind generator 1000-1600 kg/MW.
- motors and generators: 2 kg HPM/hybrid electric vehicle-20 million vehicles by 2018.
- Magnetocaloric applications 4 kg HPM/kW cooling power.

HPM= rare-earth based magnets China manages about 96 % of rare-earth resources in 2011

Clip

REE price fluctuations

The price of PrNd alloy have increased about 565% form November 2010 to July 2011. In July 2013, it drop to 22.4% compare with top price.

Instability of RE market, ex. Nd: 150 \$/kg/2013; 450 \$/kg/2011, 15 \$/kg/2009

REE price fluctuations

The price of DyFe alloy have increased about 967% form July 2010 to July 2011. In July 2013, it drop to 10.46% compare with top price.

Kaihong Ding - Yantai Shougang Magnetic Materials, China, Energy and Materials Criticality Workshop, Santorini 2013

Solutions ?

Solutions ?

Yes, we are obliged to have solutions

- 1. The increase of usage efficiency.
- 2. Recycling.

Solutions ?

Yes, we are obliged to have solutions

- 1. The increase of usage efficiency.
- 2. Recycling.
- 3. New magnetic phases without rare-earth with high magnetic properties for applications as permanent magnets and magnetic refrigeration.: Fe-Co si Fe-Ni tetragonal, Fe-Co ternary or quaternary, $Fe_{16}N_2$, MnBi, MnAl, Mn₃Ga, Heusler alloys
- 4. Soft/hard nanocomposite magnets → *Spring magnets*

Rare Earth-Free Permanent Magnets ?

RE-free hard magnetic compounds exist: FePt, CoPt, MnBi, MnAl, Zr₂Co₁₁, ε-Fe₂O₃
 Even the Alnico-type magnets still have a room for improvement; their theoretical (*BH*)_{max} is 36-49 MGOe and they have excellent temperature stability; Artificial Alnicos!

Compound	Structure	Saturation magnetization	Curie temperature (°C)	Anisotropy constant K ₁	(BH) _m
				(MJ/m³)	(MGOe)
Со	hexagonal	17.6 kG	1115	0.53	
FePt	tetragonal	14.3 kG	477	6.6	
CoPt	tetragonal	10.0 kG	567	4.9	
Co ₃ Pt	hexagonal	13.8 kG	727	2.0	
MnAl	tetragonal	6.2 kG	377	1.7	9.6
MnBi	hexagonal	7.8 kG	357	1.2	16-17
BaFe ₁₂ O ₁₉	hexagonal	4.8 kG	450	0.33	3-4
Zr ₂ Co ₁₁	orthorhombic(?)	≈70 emu/g	500	? (H _A = 34 kOe)	14
ε-Fe ₂ O ₃	orthorhombic	≈16 emu/g	?	? (H _c = 23.4 kOe)	
Alnico	Cubic (shape)	12-14			8-11 <mark>(36)</mark>
SmCo ₅	hexagonal	11.4 kG	681	17.0	25-30
Nd ₂ Fe ₁₄ B	tetragonal	16.0 kG	312	5.0	30-57

G. Hadjipanayis, Delaware University, Energy and Materials Criticality Workshop, Santorini 2013

Our recent research in these directions

1. <u>New magnetic phases</u> without rare-earth with high magnetic properties

2. Soft/hard nanocomposite magnets → <u>Spring magnets</u>

Our recent research in these directions

- 1. <u>New magnetic phases</u> without rare-earth with high magnetic properties
 - ✓ MnBi
 - ✓ MnAl
 - $Mn_{50+\delta}Al_{50-\delta}; \delta=4$
 - $Mn_{50}Al_{50-\delta}X_{\delta}$; δ =4, X=Ni, Zn, Ti
- 2. Soft/hard nanocomposite magnets → <u>Spring magnets</u>
 - ✓ hard magnetic phases of SmCo₅, SmCo₃Cu₂, R₂Fe₁₄B

 \checkmark soft magnetic phases of α -Fe, Fe-Co (~20 or 10 wt%)

Our recent research in these directions

- 1. <u>New magnetic phases</u> without rare-earth with high magnetic properties
 - ✓ MnBi
 - ✓ MnAl
 - $Mn_{50+\delta}Al_{50-\delta}; \delta=4$
 - $Mn_{50}Al_{50-\delta}X_{\delta}$; δ =4, X=Ni, Zn, Ti
- 2. Soft/hard nanocomposite magnets → <u>Spring magnets</u>

✓ hard magnetic phases of SmCo₅, SmCo₃Cu₂, R₂Fe₁₄B

 SmCo₅
 large anisotropy
 SmCo₃Cu₂
 large coercivity
 R₂Fe₁₄B
 best magnets

 ✓ soft magnetic phases of α-Fe, Fe-Co (~20 or 10 wt%)

Outline

- Introduction
- MnBi magnetic phase
- AlMn magnetic phase
- Nanocomposites magnets=Spring magnets
- Conclusions

MnBi magnetic phase

→ High temperature phase (HTP) -*Distorted Ni*₂In type hexagonal (paramagnetic)

MnBi magnetic phase

- Low temperature phase (LTP)-NiAs type Hexagonal (Ferromagnetic)
- ➢ High temperature phase (HTP) -Distorted Ni₂In type hexagonal (paramagnetic)
- Quenched high temperature phase (QHTP)-Orthorhombic (Ferromagnetic-low M_s)

Some previous works in MnBi magnetic compound*

(BH)_{max}< 2 MGOe

Density: 93%

Zhang et al. J. Appl. Phys 109, 07A722 (2011)

5

-10

-5

H (kOe)

10

287 K

15 20

*G. Hadjipanayis, Delaware University, Energy and Materials Criticality Workshop, Santorini 2013

Magnetic properties of MnBi/Sm₂Fe₁₇N_x nanocomposite powders

- ***** MnBi powders: H_c of <u>12.4 kOe</u> with M_r of 55 emu/g
- Sm₂Fe₁₇N_x powders: H_c of 7 kOe with M_r of 130
- Hybrid magnet powders exhibit
 - H_c and M_r values intermediate to those of pure MnBi and $Sm_2Fe_{17}N_x$
 - anisotropic magnetic characteristics with M_r/M_s ratio greater than 0.91

G. Hadjipanayis, Delaware University, Energy and Materials Criticality Workshop, Santorini 2013

<u>Our main results</u>

MnBi

Synthesis:

- <u>melting</u>: Mn and Bi of 99,99% purity (1 wt % Mn in excess)
- ✓ <u>annealing</u> : 258-420°C/ from 2 hours to 4 days
- ✓ mechanical milling: of bulk MnBi phase for 2 hours

X-rays powder diffraction:

- \checkmark K_a radiation of copper in the angular range $2\theta = 20 100^{\circ}$ and
- ✓ $K_{\alpha 1}$ radiation of cobalt in angular range 20 = 20 80°

Magnetic measurements:

 $\checkmark\,$ extraction method in a continuous magnetic field of up to $\pm\,$ 10 T

MnBi: influence of *annealing*

MnBi: influence of *milling*; XRD Co K_α radiation

MnBi: influence of *annealing*; XRD Cu K_{α} radiation

Outline

- Introduction
- MnBi magnetic phase
- MnAl magnetic phase
- Nanocomposites magnets=Spring magnets
- Conclusions

Mn-Al magnetic phase

Mn-Al magnetic phase

Mn-Al magnetic phase

• Acta Metall.,27(1979) 1497

Phase formation, microstructure, magnetic properties of the Mn–Al–C; bulk or MM*

Phase formation, microstructure, magnetic properties of the Mn–Al–C; bulk or MM*

20

(II)

40

30

rate of 25 °C/min and quenched.

50

Mn52.3Al46C1.7, and (d) bulk Mn54Al46. The heating rate was 25 °C/min.

(II) XRD pattern for MM Mn523Al46C1.7 heated to 760 °C at the heating

20 (deg.) Fig. 7. (I) DTA curves for (a) MM Mn56Al44, (b) MM Mn54Al46, (c)

60

70

80

1000 1100

Mn51C3

Fig. 8. Dependence of M_S and H_C on the annealing temperatures for MM and bulk samples with various compositions as indicated. The annealing time was 30 min.

- \triangleright DSC: the transformation $\varepsilon(\varepsilon') \rightarrow \tau$ phase, τ –phase stabilized by C doping,
- C doping *cannot prevent* the formation \geq of the equilibrium phases from the metastable ε -phase during annealing.

Phase formation, microstructure, magnetic properties of the Mn–Al–C; bulk or MM*

120

1000 1100

* Mn,AIC

Mn51C3

DSC: the transformation $\varepsilon(\varepsilon') \rightarrow \tau$ phase, τ –phase stabilized by C doping,

C doping *cannot prevent* the formation of the equilibrium phases from the metastable ε -phase during annealing.

50

29 (deg.)

60

Fig. 8. Dependence of M_S and H_C on the annealing temperatures for MM and bulk samples with various compositions as indicated. The annealing time was 30 min

The optimal magnetic properties for the MM samples, $H_c=4.8$ kOe, $M_r=45$ emu/g and $M_s=89$ emu/g, were obtained for $Mn_{54}Al_{46}$ annealed at 400 ° C for 10 min

(ID

*Q. Zeng, I. Baker, J.B. Cui, Z.C. Yan, JMMM, 308 (2007) 214-226

- Ingots were prepared by arc or induction melting
- Different heat treatment to stabilize the desired magnetic phase

Measurements

- Differential thermal analysis (DTA)
- XRD on Brüker D8 Advance diffractometer
- Thermomagnetic measurements up to 800 K

DTA_Mn_50Al_46Ni4 and Mn_54Al_46

Thermomagnetic studies

Mn₅₀Al₄₆Ni₄ and Mn₅₄Al₄₆

Paramagnetic behavior

Mn₅₀Al₄₆Ni₄ and Mn₅₄Al₄₆

The effective magnetic moments μ_{eff} , the spins *S*, of the Mn atoms, the τ -phase content c, the average Mn moments in the ordered state μ_{exp} , the paramagnetic Curie temperatures θ , and the Curie temperatures $T_{\rm C}$, of the τ -phase of the Mn₅₀Al₄₆Ni₄ alloy.

Sample	$\mu_{\rm eff}/{ m Mn}$ $(\mu_{ m B})$	$S_{ m Mn}$	$\begin{pmatrix} \mathcal{C}_{\tau} \\ (\%) \end{pmatrix}$	μ_{exp} (μ_{B})	θ (K)	Т _С (К)
As-cast Mn ₅₀ Al ₄₆ Ni ₄	2.98	1.07	35	2.06	629	624
Mn ₅₀ Al ₄₆ Ni ₄ annealed at 470 °C for 5h	3.04	1.1	43	2.09	624	635

Electronic and Magnetic Properties of $Mn_{50}AI_{46}M_4$ (*M* = Mn, Ni, Ti) Alloys

R. Gavrea¹, S. Mican¹, D. Benea¹, B. Neamţu², M. Coldea¹ and V. Pop¹

¹ Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 Romania
² Materials Science and Engineering Department, Technical University of Cluj-Napoca, RO-400641 Romania

Abstract: In this study we present the results of electronic structure calculations and the experimental investigations on the structural and magnetic properties of the Mn₁₀Al₄₀M₄ (M = Mn, Ni, Ti) alloys. The highest magnetic moment was found for the Mn₁₀Al₄₀M₄ (M = Mn, Ni, Ti) alloys. The meastable chapter panetic configuration of the Mn¹⁴-Mn² pane. DTA measurements pointed out the formation of the metastable chapter encodes around 470° C and is decomposition into the stable of phases at 850° C. The chases was found along with the 'r/mae only in the ac-scals sample and the ones annealed at 470°C. A maximum r phase concentration of 50% was found for the sample annealed at 470°C for 6 h. The close values of the theoretical and experimental effective magnetic moments confirm the existence of the *i*' and τ chases in these alloys.

Experimental and Computational Details:

UNIVERSITATEA

TEHNICA

Electronic structure calculations were performed in the framework of the Local Density Approximation (LDA) of the Density Functional Theory by means of the SPR-KKR method using the experimentally determined lattice parameters for Ms₁₆Al₄₆ (a = 3.94 Å, c = 3.58 Å). All relativistic effects have been taken into account, including the spin-orbit coupling, in the ferromagnetic (FM) and antiferromagnetic (AFM) spin configurations of the Mn¹⁶-Mn²⁶ para.

- The Mn₅₄Al₄₆ and Mn₅₀Al₄₆Ni₄ ingots were prepared by induction melting of the starting components under a purified Ar atmosphere.
- > The samples were annealed in an inert Ar atmosphere at temperatures between 470 and 850 °C for different times followed by quenching in water.
- XRD investigations were performed using a Brüker D8 Advance X-ray diffractometer with Cu ${\rm K}_{\alpha}$ radiation
- Differential thermal analysis (DTA) was performed between 100 and 900 °C under Ar atmosphere with a temperature ramp rate of 20 °C/min.
- The magnetization and magnetic susceptibility were measured with a Weiss-type magnetic balance in a temperature range of 300-800 K.

lectronic Structure Calculation Results:	Calculate	d magn	etic moment	s for the τ ph	ase of Mn _{so}	$Al_{40}M_4(M = 1$	li, Ti), Mn _{so} A	I _{so} and Mn _{se} i	Al _{es} alloys.			
In-Al system methods and Al atoms are situated in alternating planes spaced at a distance of c/2 [1].			Mn		AI		м		Total			
			$m_s(\mu_B)$	$m_{\rm I}(\mu_{\rm B})$	$m_s(\mu_B)$	<i>m</i> _I (μ _B)	$m_s(\mu_B)$	<i>m</i> _l (μ _B)	$m_s(\mu_B)$	<i>m</i> _i (μ _B)		
In atoms situated in adjacent planes (Mn -Mn ²⁺ pairs) AFM coupling.	Mn ₅₀ Al ₅₀	Mn _{so} Al _{so}		0.04	-0.08	-	-	-	4.68	0.08		
order to decrease the weight of the AFM interactions I Ni or Ti substitutions for Mn in Mn ₅₄ Al ₄₆ .	Ni or Ti substitutions for Mn in Mn ₈₄ Al ₄₈ .		2.43	0.007						0.07		
	MI154A146 (FM)	Mn ^{1a}	2.39	0.04	-0.08		-	•	5.02	0.07		
maller Ni or Ti moments increase of the total magnetic moment for $Mn_{50}Al_{40}M_4$ (M = Ni, 1i).	1). Mn ₅₄ Al ₄₆ (AFM)		M	Mn ²⁰	-3.17	-0.01						
			2.35	0.04	-0.07	· ·	-	-	4.38	U.08		
Smaller total energy for a mixed 1a and 2e Ni occupancy than for an exclusive 2e Ni occupancy.	Mn ₅₀ Al ₄₆ Ti ₄		2.34	0.04	-0.08	-	-0.66	-0.004	4.43	0.07		
A lower total energy was found for the alloy with the AFM coupled Mn ^{1a} -Mn ^{2e} pair.			2.45	0.04	-0.08	1.1	0.63	0.06	4.85	0.08		

Experimental Results:

During the formation of the τ phase, the following transformation occurs [1,2]: ε (disordered hexagonal) - ε' (ordered orthorhombic) - τ (letragonal)
The ε' phase is an ordered ε phase [1,2] → XRD peaks of these two phases superimpose.
Magnetic measurements can confirm whether the phase is c or ε'.

 J. H. Park, Y. K. Hong, S. Bab, J. J. Lee, J. Akil, G. S. Abo, N. Naveau, S. G. Kim, C. J. Choi, J. G. Lee, J. Appl. Phys. 107, 01A731 (2010).
 T. E. Prost, "PhD Thesis: Magnetic Properties Study of the Mn-AI System with Additions of B or C and Mechanical Milling Techniques", University of Nebrasia – Lincoln. 2012.

This work was supported by the Romanian Ministry of Education and Research, Grant No. PN-II-ID-PCE-2012-4-0470.

Outline

- Introduction
- MnBi magnetic phase
- MnAl magnetic phase
- Nanocomposites magnets=Spring magnets
- Conclusions

All this magnets have the same energy !

Nanophased materials behave differently from their macroscopic counterparts because their characteristic sizes are smaller than the characteristic length scales of physical phenomena occurring in bulk materials.

E. De Lacheisserie (edit.), Magnetisme, Presses Universitaires de Grenoble, 1999.

Theoretical predictions:

Experimental realisations: ?????????

 $D_{cr} \approx 2\delta_h$

$$\delta_h = \pi \sqrt{A_h / K_h}$$

 $D_{cr} =$ soft phase critical dimension
 $\delta_h =$ width of domain wall in the hard phase
 A_h and K_h are the exchange and anisotropy constants

SmCo₅/ α -Fe Core-Shell Nanocomposite Magnet

♦ Fukunaga predicted a drastic increase in (*BH*)_{max} of SmCo₅/α-Fe as a function of α-Fe fraction. The Dresden Group (Neu et al) obtained similar results in SmCo5/Fe multilayers (Intermag 2012). Very recently Hono's Group fabricated Fe/Nd-Fe-B multilayers with (*BH*)_m=61 MGOe (Advanced Materials, 2012).

- code: OOMMF, version 1.2
- 1-dim approach; no x-y discretization
- ☆ discretization in z-direction: ∆z = 0.5 nm
- ✤ intrinsic parameters:

	A (pJ/m)	J _s (T)	K ₁ (MJ/m3)
SmCo ₅	12	1.0	10
Fe	28	2.15	-1.84

✤ strong coupling at interface: A_i = 20 pJ/m

✤ geometry: 2 x 25 nm SmCo₅ + t_s nm Fe (nominal) or reduced SmCo₅ + increased t_s (diffusion)

field axis: parallel e.a. or tilted (texture)

Effect of different surfactants on the formation and morphology of SmCo₅ nanoflakes*

✓ oleylamine (OY), ✓ trioctylamine (TOA) ✓ oleic acid (OA),

Flake thickness and length, intensity ratio I_{002}/I_{111} values and average grain sizes of the hard SmCo₅ phase.

Original powder	Balls	Surfactants	Milling time (h)	Flake thickness (nm)	Flake length (μm)	I_{002}/I_{111}	Average grain size (nm)
SmCo ₅ ingot after crushed and ground	Mixture of different diameters: Φ4–12 mm	30 wt.% OY	3	20-210	0.5–13	2.5	21
-			4	15-170	0.5-11	2.4	16
			5	8-80	0.5 - 10	1.5	13
			6	8-80	0.2-8	0.6	10
		30 wt.% OA	3	20-210	0.5-13	2.6	21
			4	15-170	0.5 - 11	2.6	21
			5	8-80	0.5 - 10	1.8	20
			6	8-80	0.2-8	0.8	15
		30 wt.% TOA	0	_	$1-40^{a}$	-	-
			5	_	0.5–20 ^a	2	11
			10	_	0.5–20 ^a	-	_
		100 wt.% TOA	2.5	80-300	0.5-10	3.4	21
			5	30-150	0.3-8	2.5	11
		40 wt.% TOA	0.25	-	$1 - 17^{a}$	22.8	-
			0.5	500-1600	1-17	19.5	-
			1	80-800	1-15	7.2	-
			2	80-420	1-12	4.0	-
			2.5	80-200	1-10	3.8	21
			3	60-180	0.5-10	2.0	21
			4	50-150	0.5-10	1.5	18
			5	30-120	0.5-8	0.8	11
Jet-milled SmCo ₅	Single diameter: Φ4 mm	5 wt.% OA	0	_	0.5–10 ^a	63.6	-
			0.25	-	0.3–10 ^a	43.1	-
			0.5	-	0.3–10 ^a	22.2	-
			1	20-350	0.5-10	16.5	-
			2	10-200	0.4-10	4.3	-
			5	8-150	0.3-10	1.4	9
		2 wt.% OA	5	10-210	0.3-10	0.4	9
		5 wt.% OA	5	8-150	0.3-10	1.4	9
		10 wt.% OA	5	5-100	0.3-10	2.0	9

^a Particle size.

* Liyun Zheng, Baozhi Cui, George C. Hadjipanayis, Acta Materialia 59 (2011) 6772–6782

Effect of different surfactants on the formation and morphology of SmCo₅ nanoflakes*

✓ oleylamine (OY), ✓ trioctylamine (TOA) ✓ oleic acid (OA),

Flake thickness and length, intensity ratio I_{002}/I_{111} values and average grain sizes of the hard SmCo₅ phase.

Original powder	Balls	Surfactants	Milling	Flake	Flake length	$I_{002}/$	Average grain
			time (h)	thickness	(µm)	I111	size (nm)
			\frown	(nm)			
(a) ² 1 3		30 wt.% OY	3	20-210	0.5–13	2.5	21
			4	15-170	0.5-11	24	16
and the first of the second			5	8-80	0.5-10	1.5	13
			6	8-80	0.2-8	0.6	10
STA LEAST SANA		N OA	ý l	20-210	0.5-13	2.6	21
10 um	100 pm		4	15-170	0.5-11	2.6	21
	Too_min		5	8-80	0.5-10	1.8	20
	Villa:		6	8-80	0.2-8	0.8	15
	100	30 wt.% TOA	0	=	$1-40^{a}$	_	-
	Caller		5	_	0.5-20 ^a	2	11
A BAR AND THE	2101		10	_	0.5-20 ^a	_	_
	1018- 1-	100 wt.% TOA	2.5	80-300	0.5-10	3.4	21
SKIP NOVICE			5	30-150	0.3-8	2.5	11
10	100	40 wt.% TOA	0.25	-	$1-17^{a}$	22.8	-
a state of the sta	100_nm		0.5	500-1600	1-17	19.5	-
			1	80-800	1-15	7.2	-
	In the set		2	80-420	1-12	4.0	-
201 - 201 238	STATE / PART		2.5	80-200	1-10	3.8	21
			3	60-180	0.5-10	2.0	21
1 3 3 1 TO 200			4	50-150	0.5-10	1.5	18
	1. 5 1 1 1 1 1		5	30-120	0.5-8	0.8	11
10 mm	100 pm	5 wt.% OA	0	_	0.5–10 ^a	63.6	_
Contraction Contraction	100_1111		0.25	-	0.3–10 ^a	43.1	-
			0.5	-	0.3–10 ^a	22.2	-
			1	20-350	0.5-10	16.5	-
The fair the second			2	10-200	0.4 - 10	4.3	-
	A APAIN		5	8-150	0.3-10	1.4	9
	a children the	2 wt.% OA	5	10-210	0.3-10	0.4	9
S MAN AND SA	Red Black	5 wt.% OA	5	8-150	0.3-10	1.4	9
10.000		10 wt.% OA	5	5-100	0.3-10	2.0	9
Topan	100_nm						

micro-size powders became flakes.

^{*} Liyun Zheng, Baozhi Cui, George C. Hadjipanayis, Acta Materialia 59 (2011) 6772–6782

Effect of different surfactants on the formation and morphology of SmCo₅ nanoflakes*

✓ oleylamine (OY), ✓ trioctylamine (TOA) ✓ oleic acid (OA),

Flake thickness and length, intensity ratio I_{002}/I_{111} values and average grain sizes of the hard SmCo₅ phase.

Original p	owder	Balls	Surfactants	Milling time (h)	Flake thickness (nm)	Flake length (µm)	I ₀₀₂ / I ₁₁₁	Average grain size (nm)
SmCo ₅ ing	ot after	Mixture of different diameters: Φ4–12 mm	30 wt.% OY	3	20-210	0.5–13	2.5	21
er uonre u	una grouna			4	15 - 170	0.5-11	2.4	16
				5	8-80	0.5-10	1.5	13
				6	8-80	0.2-8	0.6	10
10			30 wt.% OA	3	20-210	0.5-13	2.6	21
'°.				4	15-170	0.5-11	2.6	21
16-		•		5	8-80	0.5-10	1.8	20
	-		\ /	6	8-80	0.2-8	0.8	15
14-			30 wt.% TOA	0	_	$1-40^{a}$	_	_
12-				5	_	0.5–20 ^a	2	11
ê! •				10	_	0.5–20 ^a	_	-
¥ ¹⁰]			100 wt.% TOA	2.5	80-300	0.5 - 10	3.4	21
±_ 8-		OY		5	30-150	0.3-8	2.5	11
		OA	40 wt.% TOA	0.25	-	$1 - 17^{a}$	22.8	-
61		TOA		0.5	500-1600	1-17	19.5	-
4				1	80-800	1-15	7.2	-
				2	80-420	1-12	4.0	-
2				2.5	80-200	1-10	3.8	21
0 1	Milling	time (h)		3	60-180	0.5 - 10	2.0	21
	winniğ	une (II)		4	50-150	0.5 - 10	1.5	18
				5	30-120	0.5-8	0.8	11
Jet-milled	SmCo₅	Single diameter: 04 mm	5 wt.% OA	0	_	0.5–10 ^a	63.6	_
				0.25	_	0.3–10 ^a	43.1	_
				0.5	_	0.3–10 ^a	22.2	_
				1	20-350	0.5-10	16.5	_
				2	10-200	0.4-10	4.3	_
				5	8-150	0.3-10	1.4	9
			2 wt.% OA	5	10-210	0.3-10	0.4	9
			5 wt.% OA	5	8-150	0.3-10	1.4	9
			10 wt.% OA	5	5-100	0.3-10	2.0	9

^a Particle size.

* Liyun Zheng, Baozhi Cui, George C. Hadjipanayis, Acta Materialia 59 (2011) 6772–6782

Our researches

•hard magnetic phases of SmCo₅, SmCo₃Cu₂, R₂Fe₁₄B

•soft magnetic phases of α-Fe, Fe-Co (~20 or 10 wt%)

SmCo ₅	large anisotropy
SmCo ₃ Cu ₂	large coercivity
R ₂ Fe ₁₄ B	best magnets

•hard magnetic phases of SmCo₅, SmCo₃Cu₂, R₂Fe₁₄B

•soft magnetic phases of α-Fe, Fe-Co (~20 or 10 wt%)

SmCo ₅	large anisotropy
SmCo ₃ Cu ₂	large coercivity
$R_2Fe_{14}B$	best magnets

Magnetic Hard/Soft nanocomposites – Spring magnets

 $(SmCo_5, SmCo_3Cu_2, R_2Fe_{14}B) + x\% (\alpha - Fe \text{ or } Fe_{65}Co_{35})$

- composition, x= 10 or 22 wt % Fe
- milling time
- conventional annealing/short time annealing

Material preparation

milling of the powders in a high energy planetary mill

•heat treatments (temperatures and duration)

Starting materials :

- hard magnetic phases
 - ingots prepared by melting
- Fe NC 100.24 powder (Höganäs), (< 40 μm) and
- Fe₆₅Co₃₅ obtained by melting

Mechanical milling experiments:

- premilling of hard and soft magnetic ingots
- hard magnetic + α -Fe (or Fe₆₅Co₃₅) mixed powders milled in Ar for 1.5 12 h

Annealing:

- conventional annealing:
- short time annealing:

in vacuum/450-650 ° C for 0.5 up to 10 h. in argon/700, 750 or 800 ° C for 0.5 to 3 min.

- •X-rays diffraction (XRD)
- •DSC measurements
- •Electron microscopy (SEM and TEM)
 - morphology
 - chemical composition checked by EDX
- •Magnetic measurements

S. Gutoiu, V. Pop et al., J. Optoelectron. Adv. Mater. 12 (2010) 2126-2131

R. Lardé, J-M. Le Breton, A. Maître, D. Ledue, O. Isnard, V. Pop and I. Chicinaş, J. Phys. Chem., 117 (2013) 7801

The influence of the type of hard magnetic phase

R₂Fe₁₄B/Fe

Lower coercivity Two peaks, pour hard/soft magnetic coupling SmCo₅/Fe

Higher coercivity One peak, good hard/soft magnetic coupling

the importance of the intrinsic anisotropy*

*D. Givord, O. Isnard,, V. Pop, I. Chicinas, JMMM 316 (2007)

This behavior was connected with coercivity mechanism of the $SmCo_3Cu_2$ phase given by the microstructure [1-2] and diminishing of the intrinsic coercivity by Co substitution with Cu [3].

- E. Estevez-Rams, J. Fidler, A. Penton, J.C. Tellez-Blanco, R.S. Turtelli, R. Grossinger, J. Alloys Compounds, 283 (1999) 327.
- [2] P. Kerschl, A. Handstein, K. Khlopkov, O. Gutfleisch, D. Eckert, K. Nenkov, J.-C. Te' llez-Blanco, R. Gro" ssinger, K.-H. Mu" ller, L. Schultz, J. Magn. Magn. Matter. 290–291 (2005) 420.
- [3] E. Lectard, C.H. Allibert, R. Ballou, J. Appl. Phys. 75 (1994) 6277.

The influence of the hard/soft ratio

^{*}V. Pop, O. Isnard, D. Givord, I. Chicinas, JMMM 310 (2007) 2489 V. Pop, O. Isnard, D. Givord, I. Chicinas, J. M. Le Breton, JOAM 8 (2006) 494

V. Pop et al., J. Alloys Compd. (2011)V. Pop et al., J. Alloys Compd. 581 (2013) 821–827

Microstructure and Interphase Magnetic Coupling in Nd₂Fe₁₄B/α-Fe Nanocomposites Obtained by Mechanical Milling and Short Time Annealing

S. Mican¹, R. Hirian¹, V. Pop¹, I. Chicinaş⁴ and O. Isnard^{2,3}

Abstract: This study presents the effect of different milling times and short time annealing on the structural and magnetic properties of MyGF-gL8710W % Fe nanocomposites prepared by high energy ball milling. The XBD peaks of the hard magnetic phase disappear after milling due to the damaging of the Nd_Fe_dB crystal structure. After annealing, the characteristic peaks of the hard magnetic phase draft and the damaging of the Nd_Fe_dB crystal structure. After annealing, the characteristic peaks of the hard magnetic phase are restored with a limited growth of the soft magnetic phase crystallines. The magnetic behavior was investigated from hysteresis curves and diffed vs. *i* photon. The best exchange coupling vasion behavior the 6 h milled sample annealed at 700° C for 2 minutes with a maximum coercive field value of 0.44 T. Taking into account the milling and annealing conditions, the Md_Fe_gL60-Fe exchange coupling is analyzed.

to 8 h MM [1,2]. What will happen after short

time annealing?

Experimental:

TEHNICÁ

- The Nd₂Fe₄B hard phase was prepared by induction melting in an Ar atmosphere, followed by annealing in vacuum at 950 °C for 68 h. The ingot was ground to a fine powder under 500 µm. The soft magnetic phase (12 g of NC 100.24 commercial Fe powder Höganäs product) was milled with 5 ml benzens for 4 h in a niner Ar atmosphere with a ball to powder weight ratio of 0.01.
- The Nd₂Fe₁₄B powder was mixed with the pre-milled Fe phase in a weight ratio of 90% Nd₂Fe₁₄B/10% Fe. The mixture was dry-milled in Ar for 2, 4 and 6 h respectively with a ball to powder weight ratio of 10:1. The milled samples were annealed in an Ar atmosphere at 700, 750 and 800 °C for 0.5-2.5
- min and quenched in water.
- X-Ray diffraction measurements were performed on a Brüker D8 Advance diffractometer using Cu K_g radiation.

Magnetic measurements were carried out on powder samples fixed in epoxy resin using the extraction method at 300 K in applied fields up to ±10T. Assuming isolated spherical magnetic particles we used a demagnetization factor of 1/3 for magnetic data.

Results and Discussions:

V. Pop, S. Gutoia, E. Dorolli, O. Isnard and L. Chicinas, J. Alloys Compd., 599, 9964 (2011).
 V. Pop, S. Gutoia, E. Dorolli, C. Leostean, O. Isnard, I. Chicinas and O. Pana, J. Alloys Compd., 581, 821 (2013)
 S. Gutoia, E. Dorolli, C. Isnard, I. Chicinas, and V. Pog. J. Optoelectron. Adv. Mater., 12, 2126 (2010).

This work was supported by the Romanian Ministry of Education and Research, Grant No. PN-II-ID-PCE-2012-4-0470.

Conclusions

- MnBi LTP: large coercivity at high temperature \Rightarrow a good candidate for performance spring magnets
- MnAl: stabilisation of τ with conservation of Mn moments
- The *structure and microstructure* \Rightarrow strong impact on hard/soft exchange hardness.
- Intrinsic anisotropy \Rightarrow the strength of the interphase exchange coupling
- *Annealing* linked to the *recrystallisation temperature* of soft phases and hard magnetic phases; *recover* the crystallinity of the hard phase and *hinder the increase* of Fe crystallites.
- For *higher α-Fe concentration* the magnetic properties are pourer because non correlation with Fe size crystallites.
- The *short time annealing* is more appropriate for higher coercivity of the nanocomposites.

Thank you for your attention

This contribution was supported by the Romanian Ministry of Education and Research, grant PN-II-ID-PCE-2012-4-0470